
21-1© Gunnar Gotshalks

Multiple & Repeated
Inheritance

21-2© Gunnar Gotshalks

Multiple Inheritance – Example

• Combining two abstractions into one
» COMPARABLE and NUMERIC are both useful

abstractions
> Some abstractions make use of both while

others do not

COMPARABLE NUMERIC

STRING INTEGER COMPLEX

21-3© Gunnar Gotshalks

Repeated Inheritance – Example

UNIVERSITY_
PERSON

TEACHER STUDENT

TEACHING_
ASSISTANT

• Ancestor used in multiple paths to descendant

21-4© Gunnar Gotshalks

Inheritance Types

• Implementation – abstraction that combines two
implementations
» ARRAY_STACK is both a STACK and and ARRAY

• Structural – abstraction that combines two structures
» HISTORY and STORABLE

21-5© Gunnar Gotshalks

Eiffel Global Inheritance Structure

GENERAL

ANY

NONE

Customize ANY
to have localized
global features &
invariants

GENERAL has all
Eiffel global features
& invariants

21-6© Gunnar Gotshalks

Feature Renaming

• Multiple & repeated inheritance lead to name clashes
» What if two parents use the same name for a

feature?
> A common occurrence since good names are

reused
» How can the child refer to the appropriate feature?

• Answer
» Rename one of the features – give it an alias

> Do not rely on overloading, not enough
variation
– Overloading - distinguishes features by argument type

and count

21-7© Gunnar Gotshalks

Example Renaming

• Suppose LONDON and LOS_ANGELES both have
the feature foo

• Then we can define TORONTO as follows

class TORONTO inherit
 LONDON rename foo as fog
 redefine fog end
 LOS_ANGELES rename foo as smog
 redefine smog end
feature
 ...
end

21-8© Gunnar Gotshalks

Renaming Effects

ldon : LONDON ; la : LOS_ANGELES ; tor : TORONTO

Valid – even after polymorphic assignment

ldon.foo ; tor.fog
la.foo ; tor.smog

Invalid

ldon.fog ; ldon.smog
la.fog ; la.smog
tor.foo

21-9© Gunnar Gotshalks

Redeclaration & Renaming

• Redeclaration
» Keeps the name, changes the semantics

• Renaming
» Keeps the semantics changes the name

• Can both rename and redefine
» Rename first
» Use new name when redefining

• Renaming can be useful to change the name to a
more common one for the abstraction
» TO push & pop (STACK) FROM add and remove

(CONTAINER)

21-10© Gunnar Gotshalks

Repeated Inheritance

• Indirect
» class B inherit A

class C inherit A
class D inherit B C

• Direct
» class B

 inherit
 A
 A

A

B

D

C

A

B

21-11© Gunnar Gotshalks

Problems

 DRIVER
age pass_birthday
address pay_fee
violation_count

FRENCH_
DRIVER

CANADIAN_
DRIVER

FRENCH_CANANDIAN_DRIVER

21-12© Gunnar Gotshalks

Problems – 2

What about age?
It is the same for
both drivers!

DO NOT rename!

Only rename if
inheriting different
but identically
named features

Have a single
shared feature

Sharing is not always appropriate
 – violation_count, address, pay_fee –
are all different – need to replicate for each driver

 DRIVER
age pass_birthday
address pay_fee
violation_count

FRENCH_
DRIVER

CANADIAN_
DRIVER

FRENCH_CANANDIAN_DRIVER

21-13© Gunnar Gotshalks

Repeated Inheritance Rule

• In a repeated inheritance
» Versions of a repeatedly inherited feature inherited

under the same name represent a single feature
» Versions inherited under different names represent

separate features, each replicated from the original
in the common ancestor

> Use rename to get replication
– rename pay_fee as pay_french_fee

• The rule applies to attributes as well as routines

21-14© Gunnar Gotshalks

Single Name Rule

• Definition
» The final name of a feature in a class is

> For an immediate feature, the name under which
it is declared

> For an inherited feature that is not renamed, its
final name is (recursively) in the parent from
which it is inherited

> For a renamed feature, the name resulting from
the renaming

• Single Name Rule
» Two different effective features of a class may not

have the same final name

21-15© Gunnar Gotshalks

Must Rename

• Consider the following attributes, even if the types
agree must rename problem in D
» Rename either version from B or C or both

D

Bproblem C problem

21-16© Gunnar Gotshalks

Conflicting Redefinition

• In D have two different definitions of f
» From B and from A through C

• Consider under
» sharing
» replication

A

B

D

C

f

f ++

21-17© Gunnar Gotshalks

Conflict Resolution – Sharing

• Inherit under same name
» one version is deferred other

is effective
> No problem – single name

rule
» both versions effective but

redefined in D
> No problem – produce one

redefined version

A

B

D

C

f

f ++

» both effective, no redefinition
> Problem – name clash, must rename, get

replication

21-18© Gunnar Gotshalks

Conflict Resolution – Sharing – 2

• Other solutions
» Make one of the versions

deferred – Other takes over
> Could have intermediate

class C' to defer
> Better is to use undefine

» Different names – join the
solutions

> Requires compatible
signatures and semantics class D inherit

 B
 C rename g as f
 undefine f end
....

class D inherit
 B
 C undefine f end
....

D

B C
f g

21-19© Gunnar Gotshalks

Conflict Resolution – Replication

• Suppose a1 := instance of D
» Then a1.f is ambiguous

> could be either f or bf

• Programmer must select the
version

A

B

D

C

f

bf ++
f

class D inherit
 B
 C select f end
....

class D inherit
 B select bf end
 C
....

21-20© Gunnar Gotshalks

Select Rule

• A class that inherits two or more different effective
versions of a feature from a repeated ancestor and
does not redefine them both, must include exactly
one of them in a select clause
» Use select all if that is desired

21-21© Gunnar Gotshalks

Genericity with Repeated Inheritance

• The type of any feature that is shared under the
repeated inheritance rule, and the type of any of its
arguments if it is a routine, may not be a generic
parameter of the class from which the feature is
repeatedly inherited

» Ambiguity as to the type for f in B.
» Use renaming to get replication, if genericity is

needed

class A[G] feature
 f : G
end

class B inherit
 A [INTEGER]
 A [REAL]
end

21-22© Gunnar Gotshalks

Name Clashes – Definition & Rule

• In a class obtained through multiple inheritance, a
name clash occurs when two features inherited from
different parents have the same final name

• A name clash makes the class invalid except in any
of the following cases
» The two features are inherited from a common

ancestor and none has been redeclared from the
version in that ancestor

» Both features have compatible signatures and at
least one of them is inherited in deferred form

» Both features have compatible signatures and they
are both redefined in the class

> As one redefinition for the feature

21-23© Gunnar Gotshalks

Summary of Adaptation Clauses

• Eiffel adaptation clauses are in the following order.
class B

inherit A
rename f1 as new_f1, f2 as new_f2, f3 as new_f3
export {A, B} new_f1, f4
undefine new_f3, f6

 redefine new_f2, f5
select new_f2, f7

end

