
13-1© Gunnar Gotshalks

Abstract Data Types
Documentation

13-2© Gunnar Gotshalks

Documentation

• Users are only interested in the properties of the ADT

• Programmers and designers require all the information
which a user needs AND all information pertaining to the
design and implementation

• Useful to think of the documentation as being an
annotated definition of an abstract data type

13-3© Gunnar Gotshalks

Documentation Table of Contents

• Cover page, table of contents and abstract

• Document introduction
» Informal overview of the facilities provided. Help

readers determine if this is what they need

• Data type objects
» Description of all the objects – include diagrams
» Split into

> Imported – which predefined objects are used
> Exported – for others to use
> Hidden – used in the implementation

13-4© Gunnar Gotshalks

Operations TOC – 2

• Operations
» Give

> Signature
> Informal description
> pre- and post- conditions

» Use natural language, mathematics, diagrams –
whatever best gets the meaning across.

» Be simple, complete, clear, precise, concise as possible

13-5© Gunnar Gotshalks

Operations TOC – 3

• Example – partial axiomatic description of bank accounts
» The operation signatures only – no pre- post- given

 new : [] -> account
– Create an account with a zero balance

 withdraw : account X amount -> account
– Remove amount from account

 deposit : account X amount -> account
– Add amount to account

 balance : account -> amount
– What is the amount in the account?

13-6© Gunnar Gotshalks

Operations TOC – 4

• Operation interaction
» Previous section describes operations in isolation
» Provide better understanding by showing properties

when operations are used in combination
» Common descriptive method in use is axiomatic

> List of axioms or statements which must be true if
the ADT is implemented and used correctly

13-7© Gunnar Gotshalks

Operations TOC – 5

• Axioms about the data type
» Axiom 1: New account has a balance of zero dollars

 balance(new) = 0
» Axiom 2: Cannot withdraw from a new account

 withdraw(new, amt) = error
» Axiom 3: Deposit amt and then withdraw amt with no

intervening operations the balance does not change
 balance(withdraw(deposit(acct, amt) , amt)

 = balance(acct)
» Axiom 4: Only withdraw if the balance is ≥ the amount to

withdraw. The amount is deducted from the balance
 balance(acct) < amt → withdraw(acct, amt) = error
 balance(acct) ≥ amt →

 balance(withdraw(acct, amt)) = balance(acct) – amt

13-8© Gunnar Gotshalks

TOC – 6

• How to use the ADT
» Tutorial guide on use. Dwell on nuances. Describe

various examples

• Dictionary
» Define new terminology or domain specific jargon that

implementers or users may not know

• Undesired Event Dictionary
» Description of possible errors which can occur
» Contains warnings
» How to recognize error situations
» How to recover from error situations
» What to do if recovery is impossible

13-9© Gunnar Gotshalks

TOC – 7

• ADT generation parameters
» Describe how instances and variations can be

implemented from this generic data type
> How to change base types
> How to change amount of storage for a customer

name
» Describe changes that can be made that will not violate

assumptions and specifications. Design for a class of
similar data types

» State what programming tools can be used to modify
the implementation

13-10© Gunnar Gotshalks

TOC – 8

• Design issues
» What were the design choices and why were the actual

choices chosen. Help guide future changes to keep in
the spirit of the original

> Why was fixed memory allocation used instead of
dynamic?

> Why were size limits imposed?
> Why was a particular data structure chosen?

13-11© Gunnar Gotshalks

TOC – 9

• Implementation notes
» Designer may have information of use to the

implementer. Know properties that can improve
implementation

• List of assumptions – those assumptions that
» Cannot be violated
» Not implicit in the context
» Global
» Note: cannot state all assumptions so state those that

> Are most important
> Most likely to cause problems if violated
> Are not easily detected as causing problems until a

long time later

13-12© Gunnar Gotshalks

TCO – 10

• Normal use assumptions
» Information available from the ADT
» Information that must be supplied to the ADT
» Events reported by the ADT
» Tasks that can be performed by the ADT
» Operating states of the ADT and how they affect the

Information obtained from and supplied to the ADT
» Failure states of the ADT and how they affect the

information obtained from and supplied to the ADT

13-13© Gunnar Gotshalks

TOC – 11

• Incorrect use assumptions
» Associated with run time undesired events
» What may or may not happen if the production version

has undesired event handling code removed to speed
up the system

• Program source text
» If the source test is small may be included with the

description of the operations

• Facilities index
» A quick look up reference of all programs, modules,

operations, objects and terms defined

13-14© Gunnar Gotshalks

Minimal Documentation

• Objects
» Types Diagrams where possible

• Example – stack
» Imported – none
» Exported – STACK [G]
» Hidden – implementation

1
2
3
4
5
6
7 capacity

count

1
2
3
4
5
6
7 capacity

free

Array up Array down

last

previous

previous

previous

previous

Linked list

13-15© Gunnar Gotshalks

Minimal Documentation – 2

• Operations – example for a stack
» Signatures, pre & post conditions

> push : STACK [G] x G → STACK [G]
– require true

ensure result = x ^ s & count = old count + 1
> pop : STACK [G] → STACK [G]

– require not empty (s)
ensure result = s' & count = old count - 1

> top : STACK [G] → G
– require not empty (s)

ensure result = s1

13-16© Gunnar Gotshalks

Minimal Documentation – 3

• Operations – example for a stack cont'd
> empty : STACK [G] → BOOLEAN

– require true
ensure result = (count = 0)

> new : [] → STACK [G]
– require true

ensure result = STACK [G] & count = 0
» Note: often "require true" is not written but is assumed
» It is better to write it as then one can wonder if it was left

out by accident
> "nothing" is often represented with a special symbol.

e.g. nil , λ , ε , ∆

13-17© Gunnar Gotshalks

Minimal Documentation – 4

• Operations – example for a stack cont'd
» axioms

> ∀ x : G, s : STACK [G] •
 top (push (s, x)) = x
∧ pop (push (s, x)) = s
∧ empty (new)
∧ ~ empty (push (s, x))

» Alternately can use natural language
> forall x : G, s : STACK [G } ::

 top (push (s, x)) = x
and pop (push (s, x)) = s
and empty (new)
and not empty (push (s, x))

• is read as
 "it is the case that"

13-18© Gunnar Gotshalks

ADT Invariants

• Conditions that must be true after the execution of any
method in the the class

• The conditions that hold, at all times, among the
objects in an instance of the ADT
» More on this when we discuss design by contract

13-19© Gunnar Gotshalks

Example Circular Queue

0
1

2

n-1n-2

n-3

...

firstlast

isEmpty → length = 0 & (last-1) mod Size = first
isFull → length = Size - 1
not isFull → length = (Size + first - last + 1) mod Size

first is the first
Item to removelast is the last

Item to remove

13-20© Gunnar Gotshalks

Empty Circular Queue

0
1

2

n-1n-2
n-3

...

first
last

length = (n + 1 - 2 + 1) mod n
 = (n + 0) mod n
 = 0

isEmpty → length = 0 & (last-1) mod Size = first
isFull → length = Size - 1
not isFull → length = (Size + first - last + 1) mod Size

13-21© Gunnar Gotshalks

Empty Circular Queue – 2

0
1

2

n-1n-2
n-3

...

first last

length = (n + (n-1) - 0 + 1) mod n
 = (2n + 0) mod n
 = 0

isEmpty → length = 0 & (last-1) mod Size = first
isFull → length = Size - 1
not isFull → length = (Size + first - last + 1) mod Size

13-22© Gunnar Gotshalks

Length 1 Circular Queue

0
1

2

n-1n-2
n-3

...

first

last

length = (n + 2 - 2 + 1) mod n
 = (n + 1) mod n
 = 1

isEmpty → length = 0 & (last-1) mod Size = first
isFull → length = Size - 1
not isFull → length = (Size + first - last + 1) mod Size

13-23© Gunnar Gotshalks

Longer length Circular Queue

length = (Size + first - last + 1) mod Size

length = (n + 3 - (n-3) + 1) mod n
 = (7) mod n
 = 7

0
1

2

n-1n-2
n-3

...

firstlast

