Abstract Data Types
Documentation

© Gunnar Gotshalks 13-1

Documentation

e Users are only interested in the properties of the ADT

e Programmers and designers require all the information
which a user needs AND all information pertaining to the
design and implementation

e Useful to think of the documentation as being an
annotated definition of an abstract data type

© Gunnar Gotshalks 13-2

Documentation Table of Contents

e Cover page, table of contents and abstract

e Document introduction

» Informal overview of the facilities provided. Help
readers determine if this is what they need

e Data type objects

» Description of all the objects — include diagrams
» Split into
> Imported — which predefined objects are used
> Exported — for others to use
> Hidden — used in the implementation

© Gunnar Gotshalks 13-3

Operations TOC - 2

e QOperations

» Give
> Signature
> Informal description
> pre- and post- conditions

» Use natural language, mathematics, diagrams —
whatever best gets the meaning across.

» Be simple, complete, clear, precise, concise as possible

© Gunnar Gotshalks 13-4

Operations TOC -3

e Example — partial axiomatic description of bank accounts

» The operation signatures only — no pre- post- given

new ¢t [] -> account
— Create an account with a zero balance

withdraw : account X amount -> account
— Remove amount from account

deposit : account X amount -> account
— Add amount to account

balance : account -> amount
— What is the amount in the account?

© Gunnar Gotshalks 13-5

Operations TOC - 4

e QOperation interaction
» Previous section describes operations in isolation

» Provide better understanding by showing properties
when operations are used in combination

» Common descriptive method in use is axiomatic

> List of axioms or statements which must be true if
the ADT is implemented and used correctly

© Gunnar Gotshalks 13-6

Operations TOC -5

e Axioms about the data type

» Axiom 1: New account has a balance of zero dollars
balance(new) =0

» Axiom 2: Cannot withdraw from a new account
withdraw(new, amt) = error
» Axiom 3: Deposit amt and then withdraw amt with no
intervening operations the balance does not change
balance(withdraw(deposit(acct, amt) , amt)
= balance(acct)

» Axiom 4: Only withdraw if the balance is = the amount to
withdraw. The amount is deducted from the balance

balance(acct) < amt — withdraw(acct, amt) = error

balance(acct) = amt —
balance(withdraw(acct, amt)) = balance(acct) — amt

© Gunnar Gotshalks 13-7

TOC -6

e How to use the ADT
» Tutorial guide on use. Dwell on nuances. Describe
various examples
e Dictionary
» Define new terminology or domain specific jargon that
implementers or users may not know
e Undesired Event Dictionary
» Description of possible errors which can occur
» Contains warnings
» How to recognize error situations
» How to recover from error situations

>

A4

What to do if recovery is impossible

© Gunnar Gotshalks

13-8

TOC -7

e ADT generation parameters
» Describe how instances and variations can be
implemented from this generic data type

> How to change base types
> How to change amount of storage for a customer
name
» Describe changes that can be made that will not violate
assumptions and specifications. Design for a class of
similar data types

» State what programming tools can be used to modify
the implementation

© Gunnar Gotshalks 13-9

TOC -8

e Design issues

» What were the design choices and why were the actual
choices chosen. Help guide future changes to keep in
the spirit of the original

> Why was fixed memory allocation used instead of
dynamic?

> Why were size limits imposed?

> Why was a particular data structure chosen?

© Gunnar Gotshalks 13-10

TOC-9

e |mplementation notes

» Designer may have information of use to the
implementer. Know properties that can improve
implementation

e List of assumptions — those assumptions that
» Cannot be violated
» Not implicit in the context

» Global

» Note: cannot state all assumptions so state those that
> Are most important
> Most likely to cause problems if violated

> Are not easily detected as causing problems until a
long time later

© Gunnar Gotshalks 13-11

TCO-10

e Normal use assumptions

»

»

»

»

»

»

Information available from the ADT
Information that must be supplied to the ADT
Events reported by the ADT

Tasks that can be performed by the ADT

Operating states of the ADT and how they affect the
Information obtained from and supplied to the ADT

Failure states of the ADT and how they affect the
information obtained from and supplied to the ADT

© Gunnar Gotshalks

13-12

TOC - 11

e |ncorrect use assumptions
» Associated with run time undesired events
» What may or may not happen if the production version
has undesired event handling code removed to speed
up the system
e Program source text
» If the source test is small may be included with the
description of the operations
e Facilities index

» A quick look up reference of all programs, modules,
operations, objects and terms defined

© Gunnar Gotshalks 13-13

Minimal Documentation

e QObjects
» Types Diagrams where possible

e Example — stack

» Imported — none
» Exported - STACK[G]

» Hidden — implementation last
7 capacity 7 capacity previous
6 6
5 . previous
4 count 4 previous
3 3 free
) 5 previous
1 1 AN
Array up Array down Linked list

© Gunnar Gotshalks 13-14

Minimal Documentation — 2

e QOperations — example for a stack

» Signatures, pre & post conditions
> push : STACK[G]xG — STACK[G]
— require true
ensure result=xAs & count=old count + 1

> pop : STACK[G]— STACK[G]
— require not empty (s)
ensure result = s' & count = old count - 1

>top: STACK[G] —= G

— require not empty (s)
ensure result =s,

© Gunnar Gotshalks

13-15

Minimal Documentation — 3

e (Operations — example for a stack cont'd
> empty : STACK [G] — BOOLEAN

— require true
ensure result=(count=0)

>hew:[]— STACK[G]

— require true
ensure result =STACK[G] & count=0

» Note: often "require true" is not written but is assumed

» It is better to write it as then one can wonder if it was left
out by accident

> "nothing" is often represented with a special symbol.
eg.nil,A,e,A

© Gunnar Gotshalks 13-16

Minimal Documentation — 4

e (Operations — example for a stack cont'd

» axioms
>Vx:G,s:STACK[G]" is read as
top (push (s, x))=x "it is the case that"
A pop (push(s,x))=s
A empty (new)
A ~empty (push (s, x))

» Alternately can use natural language

>forall x: G, s : STACK[G } ::
top (push(s,x))=x
and pop (push(s,x))=s
and empty (new)
and not empty (push (s, x))

© Gunnar Gotshalks 13-17

ADT Invariants

e Conditions that must be true after the execution of any
method in the the class

e The conditions that hold, at all times, among the
objects in an instance of the ADT

» More on this when we discuss design by contract

© Gunnar Gotshalks 13-18

Example Circular Queue

isEmpty — length =0 & (last-1) mod Size = first
isFull — length = Size - 1
not isFull — length = (Size + first - last + 1) mod Size

n-1 0
n-2 1

first is the first
last is the last Item to remove

Item to remove

© Gunnar Gotshalks 13-19

Empty Circular Queue

isEmpty — length =0 & (last-1) mod Size = first
isFull — length = Size - 1
not isFull — length = (Size + first - last + 1) mod Size

length=(n+1-2+1) modn
=(n+0)modn
=0

© Gunnar Gotshalks 13-20

Empty Circular Queue - 2

isEmpty — length =0 & (last-1) mod Size = first
isFull — length = Size - 1
not isFull — length = (Size + first - last + 1) mod Size

- 0
I n-1 ,

n-3 length=(n+(n-1) -0+ 1) mod n

=(2n+0) modn
=0

© Gunnar Gotshalks 13-21

Length 1 Circular Queue

isEmpty — length =0 & (last-1) mod Size = first
isFull — length = Size - 1
not isFull — length = (Size + first - last + 1) mod Size

- 0
I n-1 ,

length=(n+2-2+1) modn
=(n+1)modn
=1

© Gunnar Gotshalks 13-22

Longer length Circular Queue

length = (Size + first - last + 1) mod Size

length=(n+3-(n-3) + 1) mod n
=(7)modn
=7

© Gunnar Gotshalks 13-23

