CSE1030 - Introduction to
Computer Science 11

Lecture #8
Aggregation & Composition Il

Goals for Today

= Goals
= Theory:
= Composition versus Aggregation

= Practical:
= More About Collections
= [terators
= Shallow Copy versus Deep Copy

CSE1030 2

CSE1030 — Lecture #8

* Review: “is-a” versus “has-a”

= Theory: Composition versus Aggregation
= |teration

= Shallow vs. Deep Copy

= We're Done!

CSE1030 3

Review “is-a” versus “has-a”

uis_an n uhas_an
= e.g., Class Hierarchy:

public class Person

= e.g., Person Class:

{
// attributes
private String Name;
private int Age;

private int Weight;

|

{
Name = name;
Age = age;
Weight = weight;
3

Person(String name, int age,
int weight)

CSE1030 4

Privacy Leaks

= When somebody “outside” gets a copy of
an object meant to be securely “inside”...

internal —IT J

CSE1030 5

Privacy Leaks

= This is fixed by using the Copy Constructor to
copy sensitive objects on their way into and out-
of a class (i.e., in the accessor and mutator):

mternal Prlvatel

Privacy Leaks

import java.util.*;
public class PrivacylLeak

private HashSet<Person> students
= new HashSet<Person>();

// constructor
public PrivacylLeak()
{ students = new HashSet<Person>(); }

// add
public void add(Person p)
{ students.add(p); }

\ Privacy Leak

CSE1030 7

CSE1030 6
public static void main(String[] args)
{
PrivacylLeak course = new PrivacyLeak();
// create some students
Person sally = new Person('Sally Single", 32);
Person frank = new Person(“'Frank", 44);
Person billy = new Person("Billy", 36);
// add them to my collection
course.add(sally);
course.add(frank);
course.add(billy);
// Sally gets married and changes her name...
sally._setName(*'Sally Married");
System.out.printIn(**Class List:");
for(Person p : course.students)
System.out.printin(*" " + p.getName());
3
} CSE1030 8

Output — Why?

Class List:
Billy
Frank
Sally Married

=+ (.
internal Elr J

CSE1030 9

No Privacy Leak

import java.util.*;

public class PrivacylLeak

{

private HashSet<Person> students

= new HashSet<Person>();

// constructor
public PrivacylLeak()
{ students = new HashSet<Person>(); }

// add
public void add(Person p)
{ students.add(new Person(p)); }

No Privacy Leak

CSE1030 10

Output — Why?

Class List:
Billy
Frank
Sally Single

internal

“Sally Married”
“Sally Single”

CSE1030 11

CSE1030 — Lecture #8

= Review: “is-a” versus “has-a”

= |teration
= Shallow vs. Deep Copy
= We're Done!

Theory: Composition versus Aggregation >

CSE1030 12

Big Theory Idea for Today

= There is an important distinction between
code that uses an object, and the code that
is responsible for managing an object

= |deally: Responsibility implies Ownership

= The terms we use for this are Aggregation
versus Composition
= Aggregation = Using or Servicing an object
= Composition = Ownership - Responsibility

CSE1030 13

Big Theory Idea for Today

= Examples:

= Composition (means defining / constructing)
= Person owns Name
= CreditCard owns Balance (and TotalBalance)

= Aggregation (means collecting)
= A Person doesn’t own their Friend
= CreditCard doesn’t own the Interest Rate

= The idea is pure, but in the real world, the
distinction is often arbitrary, and depends
upon one’s perspective

CSE1030 14

Course and Student Example:

Student#l e——— il
Student#2 -—_— Bk

Student#3

Course {} El

Student {}

= Student Name Changes
= Who is responsible for the accuracy of the information?
= Does updated information need to be propagated? (next...)

= Aggregation / Composition depends upon perspective
= The Students own their objects (composition)
= The Professor uses those same objects (aggregation)
CSE1030 15

Implications — General Rules

= If you are responsible for something
= You should own it (composition)

= You should control access to it
= Private + appropriate accessor / mutator

= Beware of Privacy Leaks

= Which basically just means the owner isn’t being
responsible for changes (use: Copy Constructor)

= |f you are only using something
= Don't copy it if you don't have to (Be Efficient!)
= Use it nicely (use accessors and mutators)
= If you don’t copy it, you get updates “for free”

CSE1030 16

CSE1030 — Lecture #8

= Review: “is-a” versus “has-a”

= Theory: Composition versus Aggregation
Iteration >
= Shallow vs. Deep Copy

= We’re Done!

CSE1030 17

Automatic Iteration: “For-Each”

“Type” or

- Collection
Class Name Variable Name Variable
of the Objects

for(Class Variable : Collection)

do.somthing();
b

= This form of “for-loop” is called “for-each”

= |t only works with objects that provide iterators

(the Java Collections do) CSEL030 18

import java.util.*;
public class set

public static void main(String[] args)

{
// create a set to store my friends
HashSet<Person> friends = new HashSet<Person>();

// create some friends

Person sally = new Person(*'Sally", 32);
Person frank = new Person(“Frank™, 44);
Person billy = new Person(Billy", 36);

// add them to my collection
friends.add(sally);
friends.add(frank);
friends.add(billy);

CSE1030 19

System.out.printIn(’l have " + friends.size()
+ " friends");
System.out.printIn(*'Here they are:");
for(Person p : friends)
System.out._printin(* " + p.getName());

CSE1030 20

Output

> java set
I have 3 friends
Here they are:
Sally
Frank
Billy

CSE1030 21

How Does lteration Work?

= The class (in this case, HashSet) can produce
something called an Iterator

= An lterator provides a way to iterate (loop
through) all of the items in the set

= Lets do it “manually” to see how it works...

CSE1030 22

Java ™ Platfomm

Stamdand Edl. 7

Prev Class Mext Class Frar

Summary, Nested | Fisld | Constr | Mesh

Deetail: Field | Carrstr | Me

Java. il

Class HashSet<E>

Type Parameters:

& - lhe type of elernents maintaired by this sel

All Implemanted Interfaces

Direct Known Subclasses:

CSE1030 23

Method Detail

15 in this set. The slements are returmed In No

Specified by:

or if iPleace Trarable<E
Specified by:
itezaves ININGErfAce cellectioners
Spacified by:
in intertacs omems

specified by:

teor I €55 AbstrastoullectionsE>
Returns:
an tsrator over the elements in this set

See Also:

CSE1030 24

Prav Class Mext Class

Summary: Nested | Ficld | Constr | Methad Detail Fied | Constr | Mt

e, il

Interface Iterator<g>

Type Parameters:

£« he type of elements ralurned by his ile

All Known Subinterfaces:

Listiterator<g>

All Enown Implamenting Classes:

public

i SE1030 25

Method Summary

Maodifier and Typs Mathod and Description
baslesn hasmNesxt ()

Relurmis cxue if lhe iteration had more elements

net ()

Returms the nest it in the ileration
void Temove ()
Removes from the undarlying colaction the last alement

raturned by this itsrator {optional

sration).

Method Detail

hasNext

boolean hasMewt ()

elemants. {In othar
an frowing an ¢

Returns:

weue If he iterabion has mors slements

next

SE1030 26

import java.util.*;
public class set

public static void main(String[] args)

{
// create a set to store my friends
HashSet<Person> friends = new HashSet<Person>();

// create some friends

Person sally = new Person(*'Sally", 32);
Person frank = new Person(“Frank®™, 44);
Person billy = new Person(*Billy", 36);

// add them to my collection
friends.add(sally);
friends.add(frank);
friends.add(billy);

CSE1030 27

System.out.printIn(’l have " + friends.size()

+ " friends");

System.out.printIn(*'Here they are:");

Tterator<Person> 1t = friends.i1terator(Q);
while(it_hasNext())

System.out.printin(* " + it.next().getName());

CSE1030 28

Comparison

System.out.printIn(’'l have " + friends.size()
+ " friends™);
System.out.printIn(‘'Here they are:");
for(Person p : friends)
System.out.printIn(” " + p.getName());

System.out.printIn('l have " + friends.size()
+ " friends");
System.out.printIn(‘'Here they are:");
Iterator<Person> 1t = friends.iterator();
while(it.-hasNext())
System.out.printin(” " + it.next()-getName());

CSE1030 29

Only Call .next() Once per Object

System.out.printIn(’l have " + friends.size()

+ " friends™);
System.out.printIn(*'Here they are:");
for(Person p : friends) {

System.out.printin(** " +[plgetName());
System.out.printin(* " +|plgetAge());
}
ks
System.out.printIn(’'l have " + friends.size()
+ " friends");
System.out.printIn(*'*Here they are:");
Iterator<Person> it = friends.iterator();
while(it_.hasNext()) {
Person = 1t.next();
System.out_printin(” " + p.getName());
System.out._printin(” " + p.getAge());
3
}

CSE1030 30

To Summarise lterators

= They provide an easy way to access out data

= They are supported by all of the Java
Collections

= The special “for-each” syntax makes them
incredibly easy to use
= Automatically retrieves the iterator
= Reduces the amount of code we have to write

CSE1030 31

CSE1030 — Lecture #8

= Review: “is-a” versus “has-a”
= Theory: Composition versus Aggregation

= |teration
= Shallow vs. Deep Copy >
= We're Done!

CSE1030 32

Shallow versus Deep Copy

= |If you are copying an object {course} that
has aggregated other objects {student},
should you copy the aggregated objects
{students} too?

Should we
Want to Copy Copy
This These?

Student#l e——> <l
Student#2 —_— Frank

Student#3 \
Course {} Eli

Student {} CSE1030 33

Shallow versus Deep Copy

; Studentt1 e————> SELY
Student#1
uden ‘\ Student#Z.\) Frank
Student#2 Sally Student#3
Student#3 Eli
Coursel {}
Coursel {} Student {}
Frank
Student#1 Student#1 e———> SH
Student#2 AR Eli Student2@——ww_5, pank
Student#3 Student {} Student#3 :
Course2 {} Course2 {} Bl
Student {}
Shallow Deep
CSE1030 34

Shallow versus Deep Copy

pra— Studenti] @um——— Sally
Student#2 ‘\ oy S"‘:enm ——
Student#3 Students3
Cowse1 Course1 {} &
Student
Frank
Student#1 Student#] @em———> Sally
Student#2
e— 5 ——
Course2) Course2 &
Student
Faster = Slower
Uses Less Memory = Uses More Memory
Aggregation = Composition

Privacy Leak?

Protects the Data?
CSE1030 35

import java.util.*;
public class Course

HashSet<Person> students = new HashSet<Person>();

// constructor
public Course() { students = new HashSet<Person>(); }

// copy contructor

public Course(Course course)

{
students = new HashSet<Person>();
for(Person p : course.students)

students.add(p); <«————————— Shallow Copy

// add
public void add(Person p) { students.add(p); }

CSE1030 36

public static void main(String[] args)
{

Course course = new Course();

// create some students
Person sally = new Person(*'Sally Single", 32);

Person frank = new Person(“Frank™, 44);

Person billy

new Person(“Billy", 36);

// make a copy
Course backup = new Course(course);

// Sally gets married and changes her name...
sally.setName(*"Sally Married™);

System.out.printIn('Class List:");
for(Person p : course.students)

System.out._printin(*

" + p.getName());

// add them to

my collection

course.add(sally);
course.add(frank);
course.add(billy);

CSE1030 37

System.out.printIn(*'Backup Class List:");
for(Person p : backup.students)
System.out.printin(” " + p.getName());

CSE1030 38

Output — Shallow Copy

Class List:
Billy
Sally Married
Frank

Backup Class List:
Billy
Sally Married
Frank

CSE1030 39

Output — Why?

Class List:
Billy
Frank
Sally Married

covee =+ (D

backup

CSE1030 40

// copy contructor
public Course(Course course)
{
thisQ;
for(Person p : course.students)
students.add(new Person (p));

Deep Copy

CSE1030 41

Output — Deep Copy

Class List:
Billy
Sally Married
Frank

Backup Class List:
Sally Single
Billy
Frank

CSE1030 42

Output — Why?

Class List:
Billy
Frank
Sally Single

“Sally Married”
“Sally Single”

CSE1030 43

Shallow vs. Deep Summary

= The “Shallow versus Deep” issue is very similar
to a Privacy Leak and it also relates to
Aggregation / Composition

If you own the data, you want to ensure it doesn’t get
changed without you knowing about it

If you are using the data, you probably want to use the
latest (most accurate) data available

Be aware of the issues, and decide accordingly, by
following the Inherent Relationships in the data

CSE1030 44

CSE1030 — Lecture #8

= Review: “is-a” versus “has-a”

= Theory: Composition versus Aggregation

= |teration

= Shallow vs. Deep Copy >

We're Done!

CSE1030 45

Next topic...

Inheritance |

CSE1030 46

