
1

Jessie ZhaoJessie ZhaoJessie ZhaoJessie Zhao

jessie@cse.yorku.ca

Course page:

http://www.cse.yorku.ca/course/1019

1

� Final Exam
◦ Time: Dec 20th , 2pm

◦ Location: TM TMEAST

� Assignment 6 is released!

2

� Measures of efficiency:
◦ Running time

◦ Space used (Not included in this course)

� Efficiency as a function of input size
◦ Number of data elements (numbers, points)

◦ Number of bits in an input number

� Example: Find the factors of a number n

� Example: Determine if an integer n is prime

� Example: Find the max in A[1..n]

3

� What operations are counted?

◦ Arithmetic (add, subtract, multiply, etc.)

◦ Data movement (assign)

◦ Control (branch, subroutine call, return)

◦ Comparison

4

� COUNT the number of cycles (running time)
as a function of the input size

◦ Running time (upper bound): c1 + c5 – c3 – c4 + (c2 + c3 +
c4)n
◦ Running time (lower bound): c1 + c5 – c3 – c4 + (c2 + c3)n

5

� Best case: A[1] is the largest element.

� Worst case: elements are sorted in increasing order

� Average case: ? Depends on the input characteristics

� What do we use?

� Worst case or Average-case is usually used:

◦ Worst-case is an upper-bound; in certain application
domains (e.g., air traffic control, surgery) knowing
the worst-case time complexity is of crucial
importance

◦ Finding the average case can be very difficult; needs
knowledge of input distribution.

◦ Best-case is not very useful

6

2

7

� Running time upper bound: c1 + c5 – c3 – c4 + (c2 + c3 +
c4)n

� What are the values of ci?
◦ Machine-dependent

◦ Constant to n

� A simpler expression: a + bn

� The running time is Θ(n)
◦ a + bn is O(n)

� ∃ constants C and k such that ∀n>k a + bn ≤ Cn

◦ a + bn is Ω(n)

� ∃ constants C and k such that ∀n>k a + bn ≥ Cn

8

� Bounds on running time
◦ 1. O() is used for upper bounds “grows slower than”

◦ 2. Ω() used for lower bounds “grows faster than”

◦ 3. Θ() used for denoting matching upper and lower bounds.
“grows as fast as”

� The rules for getting the running time are
◦ 1. Throw away all terms other than the most significant one

◦ 2. Throw away the constant factors.

◦ 3. The expression is Θ() of whatever’s left.

9

� Very basic operations

� Used very, very often in real applications

� LOTS of new ideas

10

� Given an array A[1..n] does there exist a
number (key) x?

� Unsorted array: linear search
◦ Input: A[1..n]: array of distinct integers; x: an integer.
◦ Output: The location of n in A[1..n], or 0 if n is not found.

� LinearSearch(A,x)
◦ j=1
◦ Loop

� <loop invariant>: x is not in the scanned subarray.

� Exit when j>n or x=A[j]

� j=j+1

◦ End loop
◦ if j<=n then return j
◦ else return 0

11

Loop

12

Prove its correctness

� Input

� Loop

◦ Loop Invariant I

◦ Exit when E

◦ <code>

� End Loop

� Output

� Step 1. Basis case: Input->I

� Step 2. Inductive Step:
Assume I(i) is true before the
ith interaction. Prove it is true
after i+1 iteration.

I(i)∧ɮE->I(i+1)

� Step 3. Show loop terminate
and return the correct results.
I∧E->Output

3

� Proof by using loop invariant.
◦ Basis Case: j=1. No element is scanned.

◦ Inductive Step: Assume x is not in the scanned subarray
A[1..j-1]. Prove x is not in A[1..j] if the loop does not
terminate. Prove the output is correct if the loop terminates.

� If the loop does not terminate.

� j<=n and x≠A[j]. Then x is not in A[1..j].

� If the loop terminates.

� j>n or x=A[j]

� If j>n, then j=n+1. By loop invariant, x is not in A[1..n]. The output 0000
is correct.

� If x=A[j], the n j is returned. The output jjjj is correct.

13

LinearSearch(A,x)
j=1
Loop

<loop invariant>: x is not in the scanned subarray.
Exit when j>n or x=A[j]
j=j+1

End loop
if j<=n then return j
else return 0

14

LinearSearch(A,x)
j=1
Loop

<loop invariant>: x is not in the scanned subarray.
Exit when j>n or x=A[j]
j=j+1

End loop
if j<=n then return j
else return 0

� Running Time?
◦ Outside the loop: Constant O(C)

◦ The loop: O(n)

◦ Overall: O(n)

� Sorted array: Can we do better?

� Binary search: Use the sorted property to eliminate
large parts of the array

◦ Input: L[1..n]: a sorted array L(i)<L(j) if 1≤i<j≤n; x: an integer.
◦ Output: The location of n in A[1..n], or 0 if n is not found.

� BinarySearch(L,x)
◦ i=1, j=n
◦ Loop

� <loop invariant>: If x is in L[1..n], then x is in L[i..j].

� Exit when j<=i
� mid = ⌊(i+j)/2⌋

� If (x ≤ L(mid)) then

� j=mid

� Else

� i=mid+1

� End if

End loop

◦ if (x=L(i)) then return i
◦ else return 0

15

Running time?
O(log n)

� By preprocessing (sorting) the data into a
data structure (sorted array), we were able to
speed up search queries.

Very common idea in Computer Science

� Many other data structures are commonly
used: linked lists, trees, hash tables,….

� CSE 2011: Data Structures

� CSE 4101: Advanced Data Structures

16

◦ Input: A[1..n]: array of distinct numbers
◦ Output: A[1..n]: a sorted array A(i)<A(j) if 1≤i<j≤n

� Simple algorithm using FindMax
◦ 1. j=n

◦ 2. while (j>1){

◦ 3. maxindex = index of max A[1..j]

◦ 4. swap (A[maxindex], A[j])

◦ 5. j=j-1

◦ 6. }

� Proof and Running time? O(n²)

17

� We maintain a subset of elements sorted within
a list.
◦ Initially, think of the first element in the array as a sorted

list of length one.

◦ One at a time, we take one of the elements (from the
original list) and we insert it into the sorted list where it
belongs. This gives a sorted list that is one element
longer than it was before.

◦ When the last element has been inserted, the array is
completely sorted.

18

Insert A[j] into the
sorted list A[1..j-1]

4

� Proof:

◦ Basis Step: j = 2, the invariant holds because A[1] is a sorted array.

19

Insert A[j] into the
sorted list A[1..j-1]

Loop Invariant: at the start of each for loop, A[1…j-1]
consists of elements originally in A[1…j-1] but in sorted order ◦ Inductive Step: Assume elements in A[1…j-1] are sorted.

� The inner while loop moves elements A[j-1], A[j-2], …, A[k] one
position right without changing their order.

� Then the former A[j] element is inserted into kth position so
that A[k-1] ≤ A[k] ≤ A[k+1].

� A[1…j] is sorted.

20

Insert A[j] into the
sorted list A[1..j-1]

Loop Invariant: at the start of each for loop, A[1…j-1]
consists of elements originally in A[1…j-1] but in sorted order

◦ Termination: the loop terminates, when j=n+1.

� By loop invariant: “A[1…n] consists of elements originally in
A[1…n] but in sorted order”

� The output A[1..n] is correctly sorted.

21

Insert A[j] into the
sorted list A[1..j-1]

Loop Invariant: at the start of each for loop, A[1…j-1]
consists of elements originally in A[1…j-1] but in sorted order

� Let’s compute the running time as a function
of the input size.

� What is the running time?

O(n²)

22

� bubble sort O(n²)

� merge sort, quick sort, heap sort

O(nlogn)

� Linear time sorts (require certain type of
input): counting sort, radix sort, bucket sort.

23

� Optimization problems
◦ Find a solution to the given problem that either

minimizes or maximizes the value of some
parameters.

� Greedy Algorithm

� Select the best choice at each step

� Does the solution always be optimal?

24

5

� Example: Want to make change for ANY
amount using the fewest number of coins

� Simple “greedy” algorithm: keep using the
largest denomination possible

◦ Works for our coins: 1,5,10, 25,100.

◦ Does it always work?

◦ Fails for the following coins: 1,5,7,10

◦ e.g: 14 =10 + 1 +1 +1 +1, 14 = 7 + 7

25

� Prove the greedy algorithm works for {1,5,10,
25,100}.

◦ Lemma 1. Using the fewest coins possible has at
most three 25(quarters), two 10(dimes), one
5(nickels), four 1(cents), and can not have two 10
and one 5 together.

� Proof by contradiction: If we have more than any above
numbers, then we can replace them with fewer coins.

26

� Prove the greedy algorithm works for
{1,5,10, 25,100}.

� Proof by contradiction:
� Assume there is an integer n, such that there is a way to

make changes using less coins than the greedy algorithm.

� Suppose different numbers for 100 (dollars): x dollars for
greedy algorithm, and y dollars for the optimal solution

� By greedy algorithm x>=y

� If x>y, then we need to make up at least 100 from {1,5,10, 25}.
This is impossible by lemma 1.

� Similarly we can prove the greedy solution and the optimal
solution won’t have different numbers for {1,5,10, 25}.

� Q.E.D.

27

� Understand existing classic algorithms

� Design simple algorithms

� Prove the correctness of an algorithm
◦ Loop Invariant

� Analyze the time complexity of an algorithm

28

