

<section-header> body 1000<

- Proof by contradiction:
- Assume there is an integer n, such that there is a way to make changes using less coins than the greedy algorithm.
- Suppose different numbers for 100 (dollars): x dollars for greedy algorithm, and y dollars for the optimal solution
 By greedy algorithm x>=y
- If x>y, then we need to make up at least 100 from {1,5,10, 25}. This is impossible by lemma 1.
- Similarly we can prove the greedy solution and the optimal solution won't have different numbers for {1,5,10, 25}.

▶ Q.E.D.

Goals

- Understand existing classic algorithms
- Design simple algorithms
- Prove the correctness of an algorithm
 Loop Invariant
- Analyze the time complexity of an algorithm