Math/CSE 1019C:
Discrete Mathematics for Computer Science
Fall 2012

Jessie Zhao
jessie@cse.yorku.ca

Course page: http://www.cse.yorku.ca/course/1019

Analysis of Algorithms

- Measures of efficiency:
- Running time
- Space used (Not included in this course)
- Efficiency as a function of input size

Final Exam
Time: Dec $20^{\text {th }}, 2 \mathrm{pm}$
Location: TM TMEAST

- Assignment 6 is released!
- Number of data elements (numbers, points)
- Number of bits in an input number
- Example: Find the factors of a number n
- Example: Determine if an integer n is prime
- Example: Find the max in A[1..n]

Analysis of Find-max

- COUNT the number of cycles (running time) as a function of the input size

Find-max (\mathbf{A})	cost	times
1. $\max \leftarrow \mathbf{A}[1]$	c_{1}	1
2. for $\mathrm{j} \leftarrow \mathbf{2}$ to length (\mathbf{A})	c_{2}	n
3. do if (max $<\boldsymbol{A}[j])$	c_{3}	$n-1$
4. $\quad \max \leftarrow \mathbf{A}[j]$	c_{4}	$0 \leq k \leq n-1$
5. return \max	c_{5}	1

-Running time (upper bound): $\mathrm{C}_{1}+\mathrm{C}_{5}-\mathrm{C}_{3}-\mathrm{C}_{4}+\left(\mathrm{C}_{2}+\mathrm{C}_{3}+\right.$ C4) n
Running time (lower bound): $c_{1}+c_{5}-c_{3}-c_{4}+\left(c_{2}+c_{3}\right) n$

Best/Worst/Average Case Analysis

- Best case: $\mathrm{A}[1]$ is the largest element.
- Worst case: elements are sorted in increasing order
- Average case: ? Depends on the input characteristics
- What do we use?
- Worst case or Average-case is usually used:

Worst-case is an upper-bound; in certain application domains (e.g., air traffic control, surgery) knowing the worst-case time complexity is of crucial importance

- Finding the average case can be very difficult; needs knowledge of input distribution.
Best-case is not very useful

Best/Worst/Average Case

- Running time upper bound: $\mathrm{C}_{1}+\mathrm{C}_{5}-\mathrm{C}_{3}-\mathrm{C}_{4}+\left(\mathrm{C}_{2}+\mathrm{C}_{3}+\right.$ C4) n
- What are the values of c ? Machine-dependent Constant to n
- A simpler expression: a + bn
- The running time is $\Theta(n)$
- $a+b n$ is $O(n)$
- \exists constants C and k such that $\forall n>k$ a $+\mathrm{bn} \leq \mathrm{Cn}$
- $a+b n$ is $\Omega(n)$
- \exists constants C and k such that $\forall n>k a+b n \geq C n$
- Bounds on running time

1. O() is used for upper bounds "grows slower than"

Sorting and Searching

2. $\Omega()$ used for lower bounds "grows faster than"
-3. $\Theta()$ used for denoting matching upper and lower bounds. "grows as fast as"

- Very basic operations
- The rules for getting the running time are

1. Throw away all terms other than the most significant one

- LOTS of new ideas

2. Throw away the constant factors.
3. The expression is $\Theta()$ of whatever's left.

- Used very, very often in real applications

Searching an array

- Given an array A[1..n] does there exist a number (key) x ?
- Unsorted array: linear search
- Input: A[1..n]: array of distinct integers; x: an integer.

Output: The location of n in $A[1 . . n]$, or 0 if n is not found

- LinearSearch(A,x)
$\mathrm{j}=1$
Loop
<loop invariant>: x is not in the scanned subarray
Exit when $\mathrm{j}>\mathrm{n}$ or $\mathrm{x}=\mathrm{A}[\mathrm{j}]$
- $\mathrm{j}=\mathrm{j}+1$

End loop
if $\mathrm{j}<=\mathrm{n}$ then return j
else return 0

Proof using loop invariant

Loop
, Input
, Loop
Loop Invariant
Exit when E
<code>
End Loop
Output

Prove its correctness

- Step 1. Basis case: Input->1
- Step 2. Inductive Step:

Assume l(i) is true before the ith interaction. Prove it is true after $\mathrm{i}+1$ iteration.
l(i) $\wedge 7 E->l(i+1)$

- Step 3. Show loop terminate and return the correct results. $\mathrm{I} \wedge \mathrm{E}->$ Output

```
LinearSearch(A,x)
    j=1
        <loop invariant>: }\textrm{x}\mathrm{ is not in the scanned subarray.
        Exit when j>n or x=A[il
    c
    if j<=n then return
    Ise return 0
```

Proof by using loop invariant.
Basis Case: $\mathrm{j}=1$. No element is scanned.
Inductive Step: Assume x is not in the scanned subarray
$\mathrm{A}[1 . . \mathrm{j}-1]$. Prove x is not in $\mathrm{A}[1 . . \mathrm{j}]$ if the loop does not
terminate. Prove the output is correct if the loop terminates.
If the loop does not terminate
$\mathrm{j}<=\mathrm{n}$ and $\mathrm{x} \neq \mathrm{A}[\mathrm{j}]$. Then x is not in $\mathrm{A}[1 . . \mathrm{j}]$.
If the loop terminates.
$\mathrm{j}>\mathrm{n}$ or $\mathrm{x}=\mathrm{A}[\mathrm{j}]$
If $\mathrm{j}>\mathrm{n}$, then $\mathrm{j}=\mathrm{n}+1$. By loop invariant, x is not in $\mathrm{A}[1$..n]. The output $\mathbf{0}$ is correct.
If $\mathrm{x}=\mathrm{A}[\mathrm{j}]$, the n j is returned. The output j is correct.

```
LinearSearch(A,x)
    i=1
        monima,rmis at in the scaned subarrar.
        Exit when i>n or x=A[i]
    i=j+1
    If j<=n then return
    else return 0
```

 - Running Time?
 - Outside the loop: Constant O(C)
 - The loop: O(n)
 - Overall: O(n)
 , Sorted array: Can we do better?
 - Binary search: Use the sorted property to eliminate
 large parts of the array
 - Input: L[1..n]: a sorted array \(L(i)<L(j)\) if \(1 \leq i<j \leq n ; x\) : an integer
 - By preprocessing (sorting) the data into a
 Output: The location of \(n\) in \(A[1 . . n]\), or 0 if \(n\) is not found.
 data structure (sorted array), we were able to
 BinarySearch(L,x)
 speed up search queries.
 i=1, j=n
 Loop
 <loop invariant>: If x is in \(\mathrm{L}[1 . . \mathrm{n}]\), then x is in \(\mathrm{L}[\) i.. i\(]\).
 Exit when \(\mathrm{j}<=\mathrm{i}\)
 mid \(=\lfloor(i+j) / 2\rfloor\)
 If \((x \leq L\) (mid)) then
 Elsemid
 Running time?
 O(log n)
 . \(i=\) mid +1
 End if
End if
d loop
if ($\mathrm{x}=\mathrm{L}(\mathrm{i})$) then return i
else return 0
else return

- Many other data structures are commonly used: linked lists, trees, hash tables,....
- CSE 2011: Data Structures
- CSE 4101: Advanced Data Structures

Sorting

- Input: A[1..n]: array of distinct numbers

Output: A[1..n]: a sorted array $A(i)<A(j)$ if $1 \leq i<j \leq n$

Sorting: Insertion sort

- We maintain a subset of elements sorted within a list.

Initially, think of the first element in the array as a sorted list of length one.
One at a time, we take one of the elements (from the original list) and we insert it into the sorted list where it belongs. This gives a sorted list that is one element onger than it was before.
When the last element has been inserted, the array is completely sorted
2. while (j>1)\{
for $\mathrm{j}=2$ to length(A)
4. swap (A[maxindex], A[j])
5. $j=j-1$
6. \}

- Proof and Running time? $O\left(n^{2}\right)$

Loop Invariant: at the start of each for loop, A[1...j-1] consists of elements originally in $\mathrm{A}[1 . . . j-1]$ but in sorted order

- Proof:

Basis Step: $\mathrm{j}=2$, the invariant holds because $A[1]$ is a sorted array.

Loop Invariant: at the start of each for loop, $A[1 \ldots j-1]$ consists of elements originally in $\mathrm{A}[1 \ldots \mathrm{j}-1]$ but in sorted order

Inductive Step: Assume elements in $A[1 \ldots j-1]$ are sorted.
. The inner while loop moves elements $A[j-1], A[j-2], \ldots, A[k]$ one position right without changing their order.

- Then the former $\mathrm{A}[\mathrm{j}]$ element is inserted into kth position so that $A[k-1] \leq A[k] \leq A[k+1]$.
$A[1 \ldots j]$ is sorted.
for $\mathrm{j}=2$ to length (A)

Loop Invariant: at the start of each for loop, $\mathrm{A}[1 \ldots \mathrm{j}-1]$ consists of elements originally in $\mathrm{A}[1 \ldots \mathrm{j}-1]$ but in sorted order

Termination: the loop terminates, when $\mathrm{j}=\mathrm{n}+1$.

- By loop invariant: "A[1..n] consists of elements originally in A[1...n] but in sorted order" - The output $\mathrm{A}[1 . . \mathrm{n}]$ is correctly sorted.

Analysis of Insertion Sort

- Let's compute the running time as a function of the input size.

	cost C_{1} C_{2} C_{3} C_{4} c_{5} C_{6} C_{7}	

- What is the running time? $\mathrm{O}\left(\mathrm{n}^{2}\right)$

Many, many other sorts

- bubble sort $O\left(n^{2}\right)$
- merge sort, quick sort, heap sort O(nlogn)
- Linear time sorts (require certain type of input): counting sort, radix sort, bucket sort.

Greedy Algorithm

- Optimization problems
- Find a solution to the given problem that either minimizes or maximizes the value of some parameters.

- Greedy Algorithm

- Select the best choice at each step
- Does the solution always be optimal?

Greedy Algorithm

- Example: Want to make change for ANY amount using the fewest number of coins
- Simple "greedy" algorithm: keep using the largest denomination possible
- Works for our coins: $1,5,10,25,100$.
- Does it always work?

Fails for the following coins: 1,5,7,10

- e.g: $14=10+1+1+1+1,14=7+7$
- Prove the greedy algorithm works for $\{1,5,10$, 25,100\}.
- Lemma 1. Using the fewest coins possible has at most three 25(quarters), two 10(dimes), one 5 (nickels), four 1 (cents), and can not have two 10 and one 5 together.
- Proof by contradiction: If we have more than any above numbers, then we can replace them with fewer coins.
- Prove the greedy algorithm works for $\{1,5,10,25,100\}$.

Goals

, Understand existing classic algorithms

- Design simple algorithms
- Assume there is an integer n, such that there is a way to make changes using less coins than the greedy algorithm.
Suppose different numbers for 100 (dollars): x dollars for greedy algorithm, and y dollars for the optimal solution
- By greedy algorithm $x>=y$
- If $x>y$, then we need to make up at least 100 from $\{1,5,10,25\}$. This is impossible by lemma 1.
- Similarly we can prove the greedy solution and the optimal solution won't have different numbers for $\{1,5,10,25\}$.
- Q.E.D.
${ }^{5}$

