
1

Jessie ZhaoJessie ZhaoJessie ZhaoJessie Zhao

jessie@cse.yorku.ca

Course page: 

http://www.cse.yorku.ca/course/1019

1

� Why algorithms?
◦ Consider the problems as special cases of general 

problems.

� Searching for an element in any given list

� Sorting any given list, so its elements are in 
increasing/decreasing order

� What is an algorithm?
◦ For this course: detailed pseudocode, or a detailed 

set of steps

2

� Design of Algorithms (for simple problems)

� Analysis of algorithms
◦ – Is it correct?

Loop invariantsLoop invariantsLoop invariantsLoop invariants

◦ – Is it “good”?

EfficiencyEfficiencyEfficiencyEfficiency

◦ – Is there a better algorithm?

Lower boundsLower boundsLower boundsLower bounds

3

� Problem: Swapping two numbers in memory
◦ INPUT: x=a, y=b
◦ OUTPUT: x and y such that x=b and y=a.
◦ tmp = x;

◦ x = y;

◦ y = tmp;

� Can we do it without using tmp ?
◦ x = x+y;

◦ y = x-y;

◦ x= x-y;

� Why does this work? 

� Does it always work?

4

� Problem: How do you find the max of n 
numbers (stored in array A?)

◦ INPUT: A[1..n] - an array of integers
◦ OUTPUT: an element m of A such that A[j] ≤ m, 1 ≤ j ≤ 

length(A)

� Find-max (A)
◦ 1. max←A[1]
◦ 2. for j ← 2 to n
◦ 3. do if (max < A[j])
◦ 4. max ← A[j]
◦ 5. return max

5

� 1. I/O specs: Needed for correctness proofs, 
performance analysis.

◦ INPUT: A[1..n] - an array of integers
◦ OUTPUT: an element m of A such that A[j] ≤ m, 1 ≤ j ≤ 

length(A)
� 2. CORRECTNESS: The algorithm satisfies the 

output specs for EVERY valid input

� 3. ANALYSIS: Compute the running time, the 
space requirements, number of cache misses, 
disk accesses, network accesses,….

6



2

� Conditional Statements
◦ If (condition), do (S)

(p∧condition){S}q

(p∧ɮcondition)→q

∴ p{If (condition), do (S)}q

Note: p{S}q means whenever p is true for the input values of S 
and S terminates, then q is true for the output values of S.

7

� Conditional Statements
◦ If (condition), do (S₁); else do (S₂)

(p∧condition){S₁}q

(p∧ɮcondition){S₂}q

∴ p {If (condition), do (S₁); else do (S₂)} q

8

Example:    partial algorithm for Find-max

p: T

q: max≥A[j]

Example: If x<0 then 

abs:= -x

else

abs:=x

p: T

q: abs=|x|

9

� Prove that for any valid Input, the output of Find-max satisfies the 
output condition. 

� Proof by contradiction: Proof by contradiction: Proof by contradiction: Proof by contradiction: 

◦ Suppose the algorithm is incorrect.Suppose the algorithm is incorrect.Suppose the algorithm is incorrect.Suppose the algorithm is incorrect.

◦ Then for some input A, 

� Case 1: max is not an element of A. max is initialized to and 
assigned to elements of A – (a) is impossible. 

� Case 2: (∃ j | max < A[j]). 

After the jth iteration of the for-loop (lines 2 – 4), max ≥ A[j]. 
From lines 3,4, max only increases.

◦ Therefore, upon termination, max ≥ A[j], which contradicts (b).

10

� while (condition), do (S)

� Loop invariant
◦ An assertion that remains true each time S is 

executed.

◦ p is a loop invariant if (p∧condition){S}p is true.

◦ p is true before S is executed. q and ɮcondition are 
true after termination.

(p∧condition){S}p

∴ p{while condition do S} (ɮcondition ∧ p)

11

� Prove that for any valid Input, the output of Find-max satisfies the 
output condition. 

� Proof by Proof by Proof by Proof by loop invariantsloop invariantsloop invariantsloop invariants: : : : 

◦ Loop invariant: I(j): At the beginning of iteration j of the loop, max 
contains the maximum of A[1,..,j-1].

◦ Proof: 

� True for j=2. 

� Assume that the loop invariant holds for the j iteration, 

So at the beginning of iteration k, max = maximum of A[1,..,j-1].

12



3

◦ For the (j+1)th iteration
� Case 1: A[j] is the maximum of A[1,…,j]. In lines 3, 4, max 

is set to A[j].

� Case 2: A[j] is not the maximum of A[1,…,j]. So the 
maximum of A[1,…, j] is in A[1,…,j-1]. By our assumption 
max already has this value and by lines 3-4 max is 
unchanged in this iteration.

13

� STRATEGY: We proved that the invariant holds 
at the beginning of iteration j for each j used 
by Find-max.

◦ Upon termination, j = length(A)+1. (WHY?)

◦ The invariant holds, and so max contains the 
maximum of A[1..n]

14

� Advantages:
◦ Rather than reason about the whole algorithm, 

reason about SINGLE iterations of SINGLE loops.

� Structured proof technique

� Usually prove loop invariant via Mathematical 
Induction. 

15


