Math/CSE 1019C:
Discrete Mathematics for Computer Science Fall 2012

Jessie Zhao
jessie@cse.yorku.ca

Course page: http://www.cse.yorku.ca/course/1019

Algorithm (topics)

- Design of Algorithms (for simple problems)
- Problem: Swapping two numbers in memory
- INPUT: $x=a, y=b$
- OUTPUT: x and y such that $x=b$ and $y=a$.
- Analysis of algorithms
$\circ \operatorname{tmp}=\mathrm{x}$;
- Is it correct?
$\therefore \mathrm{x}=\mathrm{y}$;
Loop invariants
- $y=$ tmp;
- Is it "good"? Efficiency
- Is there a better algorithm? Lower bounds
- Can we do it without using tmp ?
- $x=x+y$;
- $y=x-y$;
- $x=x-y$;
- Why does this work?

Does it always work?

Introduction to Algorithms

- Why algorithms?
- Consider the problems as special cases of general problems.
- Searching for an element in any given list
- Sorting any given list, so its elements are in increasing/decreasing order
- What is an algorithm?
- For this course: detailed pseudocode, or a detailed set of steps

- Problem: How do you find the max of n numbers (stored in array A?)
- INPUT: A[1..n] - an array of integers
- OUTPUT: an element m of A such that $A[j] \leq m, 1 \leq j \leq$ length(A)

Find-max (A)

1. $\max \leftarrow A[1]$
-2. for $\mathrm{j} \leftarrow 2$ to n
-3. do if (max < A[j])
-4. $\quad \max \leftarrow A[j]$
2. return max

Reasoning (formally) about algorithms

- 1. I/O specs: Needed for correctness proofs, performance analysis.
- INPUT: A[1..n] - an array of integers
- OUTPUT: an element m of A such that $A[j] \leq m, 1 \leq j \leq$ length(A)
- 2. CORRECTNESS: The algorithm satisfies the output specs for EVERY valid input
- 3. ANALYSIS: Compute the running time, the space requirements, number of cache misses, disk accesses, network accesses,....

Correctness proofs for conditional statements

- Conditional Statements
- If (condition), do (S)

Correctness proafs for conditional statements

- Conditional Statements

If (condition), do (S1); else do (S2)
(p^condition)\{S\}q
($p \wedge$ condition) \rightarrow q
$\therefore \mathrm{p}\{$ If (condition), do (S) $\}$ q
Note: $p\{S\} q$ means whenever p is true for the input values of S and S terminates, then q is true for the output values of S.

Correctness proofs of algorithms

```
Find-max (A)
1. \(\max \leftarrow \mathrm{A}[1]\)
. for \(\mathrm{j} \leftarrow 2\) to length \((A)\)
3. do if \((\max <A[j])\)
4. \(\max _{\text {5. }} \leftarrow \mathrm{A}[j]\)
```

Prove that for any valid Input, the output of Find-max satisfies the output condition.
Proof by contradiction:
Suppose the algorithm is incorrect.
Then for some input A,

- Case 1: max is not an element of A. max is initialized to and assigned to elements of $A-(a)$ is impossible.
- Case 2: ($\exists \mathrm{j} \mid \max <\mathrm{A}[\mathrm{j}])$.

After the jth iteration of the for-loop (lines $2-4$), max $\geq A[j]$. From lines 3,4, max only increases
Therefore, upon termination, max $\geq A[j]$, which contradicts (b).

Correctness proofs using loop invariants

- while (condition), do (S)
- Loop invariant

An assertion that remains true each time S is executed.
p is a loop invariant if ($p \wedge$ condition) $\{S\} p$ is true. p is true before S is executed. q and 7 condition are true after termination.
($\mathrm{p} \wedge$ condition) $\{\mathrm{S}\} \mathrm{p}$

Loop invariant proofs

Find-max (A)

1. $\max \leftarrow A[1]$
2. for $\mathrm{j} \leftarrow 2$ to length(A)
3. do if $(\max <A[j])$
4. return max

Prove that for any valid Input, the output of Find-max satisfies the output condition.
Proof by loop invariants:
Loop invariant: $I(j)$: At the beginning of iteration j of the loop, max contains the maximum of $A[1, . ., j-1]$.
Proof:
True for $\mathrm{j}=2$.
Assume that the loop invariant holds for the j iteration,
So at the beginning of iteration $\mathrm{k}, \max =$ maximum of $\mathrm{A}[1, . ., \mathrm{j}-1]$.

Loop invariant proofs

Find-max (A)
 1. $\max \leftarrow \mathrm{A}[1]$
 2. for $\mathrm{j} \leftarrow 2$ to length (A)
 3. do if $(\max <A[j])$
 4. $\max _{\text {5. return } \max } \leftarrow A[j]$

For the $(\mathrm{j}+1)$ th iteration

- Case 1: A[j] is the maximum of $A[1, \ldots, j]$. In lines 3,4 , max is set to $A[j]$.
- Case 2: $A[j]$ is not the maximum of $A[1, \ldots, j]$. So the
maximum of $A[1, \ldots, j]$ is in $A[1, \ldots, j-1]$. By our assumption max already has this value and by lines 3-4 max is unchanged in this iteration.

Loop invariant proofs

, STRATEGY: We proved that the invariant holds at the beginning of iteration j for each j used by Find-max.

- Upon termination, $\mathrm{j}=$ length(A)+1. (WHY?)

The invariant holds, and so max contains the maximum of $A[1 . . n]$

Loop invariant proofs

- Advantages:

Rather than reason about the whole algorithm, reason about SINGLE iterations of SINGLE loops.

- Structured proof technique
- Usually prove loop invariant via Mathematical Induction.

