Math/CSE 1019C:
Discrete Mathematics for Computer Science Fill 2012

Jessie Zhao
jessie@cse.yorku.ca

Course page: http://www.cse.yorku.ca/course/1019

Mathematical Induction

- Proof methods: direct proof, proof by cases, proof by contraposition, proof by contradiction, disproof by counterexample
- Mathematical induction
very simple and powerful proof technique
often used to prove $\mathrm{P}(\mathrm{x})$ is true for all positive integers
- "Guess" and verify strategy
- Last date to drop courses without receiving a grade: Nov $9^{\text {th }}$
- No Assignment is released today!
- Test 2 on Nov 5th,

Ch2.1-2.5
7pm-8:20pm

- Location: SLH F (Last name from A-L) and SLH A (Last name from $\mathrm{M}-\mathrm{Z}$)
- Lecture: 8:40pm, SLH A.
- You may pick up your Assignment 4 during my office hour: Nov $5^{\text {th }} 2: 00 \mathrm{pm}-4: 00 \mathrm{pm}$ (TEL 3056)

Principle of Mathematical Induction

$$
(\mathrm{P}(1) \wedge \forall \mathrm{k}(\mathrm{P}(\mathrm{k}) \rightarrow \mathrm{P}(\mathrm{k}+1)) \rightarrow \forall \mathrm{nP}(\mathrm{n})
$$

- To prove that $\forall \mathrm{nP}(\mathrm{n})$, where $\mathrm{n} \in \mathrm{Z}^{+}$and $\mathrm{P}(\mathrm{n})$ is a propositional function, we complete two steps:
- i) Basis step: Verify $\mathrm{P}(1)$ is true
- ii)Inductive step: Show $P(k) \rightarrow P(k+1)$ is true for arbitrary $\mathrm{k} \in \mathrm{Z}^{+}$

Mathematical Induction

- Knowing it is true for the first element means it must be true for the next element, i.e. the second element
- Knowing it is true for the second element implies it is true for the third and so forth.
- How to show $\mathrm{P}(1)$ is true?
- Replace n by 1 in $\mathrm{P}(\mathrm{n})$
- How to show $\mathrm{P}(\mathrm{k}) \rightarrow \mathrm{P}(\mathrm{k}+1)$ is true?
- Direct proof is normally used

$\mathrm{P}(1)$	$\mathbf{P}(2)$
$\mathbf{P}(\mathrm{k}) \rightarrow \mathrm{P}(\mathrm{k}+1)$	$\mathbf{P}(\mathrm{k}) \rightarrow \mathbf{P}(\mathrm{k}+1)$
$\mathbf{P}(2)$	P(3)

- Need a starting point (Base case)
- (Inductive Hypothesis) Assume $P(k)$ is true for some arbitrary k
- Then show $\mathrm{P}(\mathrm{k}+1)$ is true

Proving Summation

- Example: Show that $1^{2}+2^{2}+3^{2}+\ldots+n^{2}=$ $n(n+1)(2 n+1) / 6$, where $n \in Z^{+}$
- Proof:

Basis case $\mathrm{P}(1)$: LHS $=1^{2}=1, \mathrm{RHS}=1 *(1+1)(2 * 1+1) / 6=1$ Inductive step:

- Assume $P(k)$ is true
$1^{2}+2^{2}+3^{2}+\ldots+k^{2}=k(k+1)(2 k+1) / 6$
- For $\mathrm{P}(\mathrm{k}+1)$:

Show that $1^{2}+2^{2}+3^{2}+\ldots+k^{2}+(k+1)^{2}=(k+1)(k+2)(2 k+3) / 6$
(Details on Board)

- We showed $P(k+1)$ is true under the assumption that $P(k)$ is true.
- By mathematical induction $\mathrm{P}(\mathrm{n})$ is true for all positive integers negers

Proving divisibility

- Example: Prove that $\mathrm{n}^{3}-\mathrm{n}$ is divisible by 3 whenever n is a positive integer.
Basis step: $P(1): 1^{3}-1=0$, which is divisible by 3 . Inductive step:
- Assume $P(k)$ is true: $k^{3}-k$ is divisible by 3
- For $\mathrm{P}(\mathrm{k}+1)$:
$(k+1)^{3}-(k+1)$
$=k^{3}+3 k^{2}+3 k+1-k-1$
$=\left(k^{3}-k\right)+3\left(k^{2}+k\right)$
From the assumption, $\mathrm{k}^{3}-\mathrm{k}$ is divisible by 3 , so $\mathrm{P}(\mathrm{k}+1)$ is true.
By mathematical induction, $\mathrm{P}(\mathrm{n})$ is true for all positive integers
- Show that $1+2+2^{2}+\ldots+2^{n}=2^{n+1}-1$, where $n \in N$
- Proof by induction:

Basis step: $\mathrm{P}(0)$: $\mathrm{LHS}=1, \mathrm{RHS}=2^{1}-1=1$.
Inductive step:

- Assume $P(k)$ is true for arbitrary $k \in N$, $1+2+\ldots+2^{k}=2^{k+1}-1$
- Need to show $P(k+1): 1+2+\ldots .+2^{k}+2^{k+1}=2^{k+2}-1$ is true. LHS $=\left(1+2+\ldots+2^{k}\right)+2^{k+1}=2^{k+1}-1+2^{k+1}=2^{k+2}-1$ So LHS $=$ RHS. We showed $P(k+1)$ is true under the assumption that $\mathrm{P}(\mathrm{k})$ is true.
By mathematical induction $\mathrm{P}(\mathrm{n})$ is true for all natural numbers

Proving Inequalities

- Example: $n<4^{n}$, where $n \in Z^{+}$
- Proof
- Basis case: $\mathrm{P}(1)$ holds since $1<4$
- Inductive step:
- Assume $P(k)$ is true: $k<4^{k}$
- For $\mathrm{P}(\mathrm{k}+1)$:
$\mathrm{k}+1<4^{\mathrm{k}}+1<4^{\mathrm{k}}+4^{\mathrm{k}}=2^{*} 4^{\mathrm{k}}<4^{*} 4^{\mathrm{k}}=4^{\mathrm{k}+1}$
By mathematical induction $\mathrm{P}(\mathrm{n})$ is true for all positive integers

Mathematical Induction (Base case $n \neq 1$)

- Basis case doe not have to be $n=1$
- How to show that $P(n)$ is true for $n=b, b+1$, $b+2, \ldots$. where b is an integer other than 1? - i) Basis step: Verify $\mathrm{P}(\mathrm{b})$ is true
- ii)Inductive step: Show $P(k) \rightarrow P(k+1)$ is true for arbitrary $k \in Z$
- Prove $\sum_{i=0}^{n} a r^{i}=\frac{a r^{r+1}-a}{r-1} \quad$ if $\mathrm{r} \neq 1$
- Proof by induction:
- $P(n): a+a r+a r^{2} \ldots .+a r^{n}=\left(a r^{n+1}-a\right) /(r-1)$

Basis case: $P(0)$: $a=(a r-a) /(r-1)$. So, $P(0)$ is true
Inductive step:

- Assume $P(k)$ is true for arbitrary $k \in N$,

$$
a+a r+a r^{2} \ldots .+a r^{k}=\left(a r^{k+1}-a\right) /(r-1)
$$

- Need to show P(k+1):
$a+a r+a r^{2} \ldots .+a r^{k}+a r^{k+1}=\left(a r^{k+2}-a\right) /(r-1)$ is true.
- LHS $=\left(a r^{k+1}-a\right) /(r-1)+a r^{k+1}$
$=\left(a r^{k+1}-a+a r^{k+2}-a r^{k+1}\right) /(r-1)$
- So LHS = RHS.
- We showed $P(k+1)$ is true under the assumption that $P(k)$ is true.
By mathematical induction $\mathrm{P}(\mathrm{n})$ is true for all natural wumbers

A wrong proof, WHY?

- Show that all horses are the same color.
- Proof:

We do induction on the size of sets of horses of the same color.
Basis step: Obviously all sets of 0 horses (and all sets with 1 horse) are the same color
Inductive step:

- Assume all horses are the same color for k horses
- Now show it must be true for all sets of $k+1$ horses
- Every set of $k+1$ horses has an overlap of horses which are the same color.
- So $\mathrm{k}+1$ horses have the same color.
- Therefore all horses have the same color.

Strong Induction Variation

- A more general strong induction can handle cases where the inductive step is valid only for integers greater than a particular integer.
- To prove that $P(n)$ is true for all integer $n \geq b$, we complete two steps:
- i) Basis step: Verify $\mathrm{P}(\mathrm{b}), \mathrm{P}(\mathrm{b}+1), \ldots, \mathrm{P}(\mathrm{b}+\mathrm{j})$ are true ii)Inductive step: Show
$P(b+1) \wedge P(b+2) \wedge \ldots \wedge P(b+k) \rightarrow P(k+1)$ is true for every integer $k \geq b+j$

Strong Induction

$(P(1) \wedge \forall k(P(1) \wedge P(2) \wedge \ldots \wedge P(k) \rightarrow P(k+1)) \rightarrow \forall n P(n)$
, To prove that $\forall n P(n)$, where $n \in Z^{+}$and $P(n)$ is a propositional function, we complete two steps: - i) Basis step: Verify P(1) is true

- ii)Inductive step: Show $P(1) \wedge P(2) \wedge \ldots \wedge P(k) \rightarrow P(k+1)$ is true for arbitrary $k \in \mathbf{Z}^{+}$
- Example: Show that if n is an integer greater than 1 , then n can be written as the product of primes
- Proof by strong induction:
- First identify P(n), P(n): n can be written as the product of primes
Basis step: $\mathrm{P}(2)$: 2 is a prime number, so $\mathrm{P}(2)$ is true. Inductive step:
- Assume $P(j)$ is true for $1<j \leq k$ for an arbitrary $k>1$, i.e. j can be written as the product of primes when $1<j \leq k$
- Need to show $\mathrm{P}(\mathrm{k}+1)$.
- Case $1: \mathrm{k}+1$ is prime, then $\mathrm{P}(\mathrm{k}+1)$ is true.
- Case 2: $\mathrm{k}+1$ is composite
$k+1=a * b$, where a and b are positive integers, and $2 \leq a, b \leq k$. By the assumption, a and b can be written as the product of primes. Then $\mathrm{k}+1$ can be written as the product of primes.

