Math/CSE 1019C:
Discrete Mathematics for Computer Science Fall 2012

Jessie Zhao
jessie@cse.yorku.ca

Course page: http://www.cse.yorku.ca/course/1019

Review: Countability

- A set is countable if
- it is finite or
- it has the same cardinality as the set of the positive integers Z^{+}i.e. $|A|=\left|Z^{+}\right|$. The set is countably infinite
- We write $|A|=|Z+|=\kappa_{0}=$ aleph null

Review: Countability

- We have showed the following sets are countable by constructing a bijective function from each set to Z^{+}
- The set of odd positive integers
- $f(n)=2 n-1$
- The set of integers
$\cdot f(n)=n / 2$ if n is even, and $f(n)=(n-1) / 2$ if n is odd.
- Proving the set is countable infinite involves (usually) constructing an explicit bijection with Z $^{+}$

Review: Countability

- The union of two countable sets is countable.
- Assume A and B are disjoint. (If not, then consider (A-B) and B, since $A \cup B=(A-B) \cup B$)
- Both finite
- $A \cup B$ is finite, and therefore countable

The rationals are countable

- Step 1. Show that $\mathbf{Z}^{+} \times \mathbf{Z}^{+}$is countable.
- A is finite and B is countably infinite
- $A=\left\{a_{1, \ldots, \ldots} a_{|A|}\right\}, g: N \rightarrow B$ is a bijection
- New bijection $h_{1}: Z^{+} \rightarrow A \cup B$
- $h(n)=a_{n}$, if $n \leq|A|$
$=g(n-|A|)$, if $n>|A|$
- Both countably infinite
- $f: Z^{+} \rightarrow A, g: Z^{+} \rightarrow B$ are bijections
- New bijection $h_{2}: Z^{+} \rightarrow A \cup B$
- $h_{2}(n)=f(n / 2)$ if n is even
$=g((n-1) / 2)$ if n is odd.
, Step 2. Show injection between $\mathrm{Q}^{+}, \mathrm{Z}^{+} \times \mathrm{Z}^{+}$.
- Step 3. Construct a bijection from Q^{+}to Q
(details done on the board)

The reals are not countable

- Wrong proof strategy:

Suppose it is countable
Write them down in increasing order
Prove that there is a real number between any two successive reals.

WHY is this incorrect?
(Note that the above "proof" would show that the rationals are not countable!!)

The reals are not countable - 2

- Cantor diagonalization argument (1879)
- VERY powerful, important technique.
- Proof by contradiction.
- Sketch (details done on the board)
- Assume countable
- look at all numbers in the interval $[0,1$)
- list them in ANY order
- show that there is some number not listed

Matrix

- A matrix is a rectangular array of numbers.

Matrix Arithmetic

- $\mathrm{A}+\mathrm{B}$ and $\mathrm{A}-\mathrm{B}$ requires that A and B have the same number of columns and rows.
Let $\mathrm{A}=\left[a_{i, j}\right], \mathrm{B}=\left[b_{i, j}\right]$ be m -by-n matrices
$\mathrm{A}+\mathrm{B}=\left[a_{i, j}+b_{i, j}\right]$
$\mathrm{A}-\mathrm{B}=\left[a_{i, j}-b_{i, j}\right]$
Example: $A=\left[\begin{array}{ll}2 & 4 \\ 3 & 1\end{array}\right], \mathrm{B}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
$A+B=\left[\begin{array}{cc}2+1 & 4+0 \\ 3+0 & 1+1\end{array}\right]=\left[\begin{array}{cc}3 & 4 \\ 3 & 2\end{array}\right] \quad A-B=\left[\begin{array}{cc}2-1 & 4-0 \\ 3-0 & 1-1\end{array}\right]=\left[\begin{array}{ll}1 & 4 \\ 3 & 0\end{array}\right]$
- The product of A and B, denoted by $A B$.
- $A B$ requires: The number of columns in A is the same as the number of rows in B.
- Let A be an $m^{*} k$ matrix and B be a $k^{*} n$ matrix. $\mathrm{AB}=\left[c_{i, j}\right]$ is a $\mathrm{m} * \mathrm{n}$ matrix.

$$
c_{i, j}=a_{i, 1} b_{1, j}+a_{i, 2} b_{2, j}+\ldots+a_{i, k} b_{k, j}
$$

- Example $A=\left[\begin{array}{ll}2 & 4 \\ 3 & 1\end{array}\right], \mathrm{B}=\left[\begin{array}{ccc}1 & -1 & 2 \\ 0 & 1 & 3\end{array}\right]$
- $A B=$?
- $B A=$?

Transpose

- Let $\mathrm{A}=\left[a_{i, j}\right.$] be an $\mathrm{m} * \mathrm{n}$ matrix. The transpose of A , denoted by A^{\prime}, is an $\mathrm{n}^{*} \mathrm{~m}$ matrix $\mathrm{A}^{\prime}=\left[a_{j, i}\right]$
, Example

$$
\begin{aligned}
& \mathrm{B}=\left[\begin{array}{lll}
1 & -1 & 2 \\
0 & 1 & 3
\end{array}\right] \\
& \mathrm{B}^{\prime}=\left[\begin{array}{ll}
1 & 0 \\
-1 & 1 \\
2 & 3
\end{array}\right]
\end{aligned}
$$

- More about Matrices: Linear Algebra

The Growth of Functions

- How fast does a function grow? How to measure it?
- We quantify the concept that g grows at least as fast as f.
- What really matters in comparing the complexity of algorithms?
- We only care about the behaviour for large problems
Even bad algorithms can be used to solve small problems

Big-O Notation

k

Big-O Notation

- $\mathrm{O}(\mathrm{g})$ is a set called a complexity class
- $\mathrm{O}(\mathrm{g})$ contains all the functions which g dominates
- Notation: f is $\mathrm{O}(\mathrm{g})$ or $\mathrm{f}=\mathrm{O}(\mathrm{g})$ means $\mathrm{f} \in \mathrm{O}(\mathrm{g})$
- Example: $f(x)=x^{2}+2 x+1$ is $O\left(x^{2}\right)$.

Proof:

- Example: $f(x)=7 x^{2}$ is $O\left(x^{3}\right)$.
- Proof:

Observe that whenever $x>1,1<x<x^{2}$ is true.

- Observe that whenever $x>1, x^{2}<x^{3}$ is true.
- Then it follows that for $x>1$

Then it follows that for $x>1$
$0 \leq x^{2}+2 x+1=|f(x)| \leq x^{2}+2 x^{2}+x^{2}=4 x^{2}=4\left|x^{2}\right|$
$\circ 0 \leq 7 x^{2}=|f(x)| \leq 7 x^{3}=7\left|x^{3}\right|$
$\therefore \quad \therefore k=1$ and $C=4$
$\therefore \mathrm{k}=1$ and $C=7$
$\therefore f(x)=O\left(x^{2}\right)$ or $f(x) \in O\left(x^{2}\right)$
$\therefore f(x)=O\left(x^{3}\right)$ or $f(x) \in O\left(x^{3}\right)$

- Is it true that x^{3} is $O\left(7 x^{2}\right)$?

Determine whether witnesses exist or not.

- Assume we can find C and k such that
$x^{3} \leq C\left(7 x^{2}\right)$ whenever $x>k$
i.e. $x \leq 7 C$ whenever $x>k$

No matter what C and k are, the inequality $x \leq 7 C$ cannot hold for all x with $x>k$.
So, x^{3} is not $O\left(7 x^{2}\right)$.

Growth of polynomial functions

- The leading term of a polynomial function determines its growth
- Let $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}$ where $a_{n}, a_{n-1}, \ldots, a_{1}, a_{0}$ are real numbers.
- Then $f(x)$ is $\mathbf{O}\left(x^{n}\right)$.
- See the proof in textbook

Properties of Big-O

- f is $\mathrm{O}(\mathrm{g})$ iff $\mathrm{O}(\mathrm{f}) \subseteq \mathrm{O}(\mathrm{g})$

Properties of Big-O

- If f is $O(g)$ and g is $O(h)$ then $f=O(h)$
- The set $\mathrm{O}(\mathrm{g})$ is closed under addition:

If $f_{1}(x)$ and $f_{2}(x)$ are both $O(g(x))$, then $\left(f_{1}+f_{2}\right)(x)$ is $\mathrm{O}(\mathrm{g}(\mathrm{x}) \mathrm{)}$

- The set $\mathrm{O}(\mathrm{g})$ is closed under multiplication by a scalar a $(a \in R)$:
- If f is $O(g)$ then af is $O(g)$
$\mathrm{O}(\mathrm{f}) \subseteq \mathrm{O}(\mathrm{g}) \subseteq \mathrm{O}(\mathrm{h})$
- If f_{1} is $O\left(g_{1}\right)$ and f_{2} is $O\left(g_{2}\right)$ then
- $f_{1} f_{2}$ is $O\left(g_{1} g_{2}\right)$
- $\mathrm{f}_{1}+\mathrm{f}_{2}$ is $\mathrm{O}\left(\max \left\{\mathrm{g}_{1}, \mathrm{~g}_{2}\right\}\right)$

Important Complexity Classes

$-\mathrm{O}(1) \subseteq \mathrm{O}(\log n) \subseteq \mathrm{O}(\mathrm{n}) \subseteq \mathrm{O}(\mathrm{nlog} n) \subseteq \mathrm{O}\left(\mathrm{n}^{2}\right) \subseteq$

Some crucial facts

- Logarithmic << Polynomial
- $\log 1000 \mathrm{n} \ll \mathrm{n}^{0.001}$ for sufficiently large n
- Linear \ll Quadratic
- $1000 \mathrm{n} \ll 0.0001 \mathrm{n}^{2}$ for sufficiently large n
- Polynomial \ll Exponential
- $\boldsymbol{n}^{1000} \ll 2^{0.001 n}$ for sufficiently large n
, Example: Find the complexity class of the function $\left(n n!+3^{n+2}+3 n^{100}\right)\left(n^{n}+n 2^{n}\right)$
- Solution:
- This means to simplify the expression. Throw out stuff which you know doesn't grow as fast.
Use the property that if f is $O(g)$ then $f+g$ is $O(g)$ (i) For $n n!+3^{n+2}+3 n^{100}$, eliminate 3^{n+2} and $3 n^{100}$ since n ! grows faster than both of them
(ii) Now simplify $\mathrm{n}^{\mathrm{n}}+\mathrm{n} 2^{\mathrm{n}}$, which grows faster? Take the \log (base 2) of both (since the log is an increasing function whatever conclusion we draw about the logs will also apply to the original functions)
Compare nlogn and logn $+n$, nlogn grows faster so we keep n^{n}.
The complexity class is $\mathrm{O}\left(\mathrm{nn}!\mathrm{n}^{\mathrm{n}}\right)$

Big-Theta

- Assume $f: Z \rightarrow R$ and $g: Z \rightarrow R$.
$f(x)$ is $\Theta(g(x))$ iff $f(x)=O(g(x))$ and $f(x)=\Omega(g(x))$
- Big-Theta Θ provides both upper and lower bounds for functions

Big-Omega

- Assume $\mathrm{f}: \mathrm{Z} \rightarrow \mathrm{R}$ and $\mathrm{g}: \mathrm{Z} \rightarrow \mathrm{R}$.
- $f(x)$ is $\Omega(g(x))$ iff \exists positive constants C and k such that

$$
\forall x>k|f(x)| \geq C|g(x)|
$$

- Big-O vs Big-Omega:
- Big-O provides upper bound for functions
- Big-Omega provides lower bound for functions

