Math/CSE 1019C:
Discrete Mathematics for Computer Science Fall 2012

Jessie Zhao
jessie@cse.yorku.ca

Course page: http://www.cse.yorku.ca/course/1019

Review of Sets

- What is a set?
- Unordered collection of distinct elements
- How to describe a set?
- Roster method: $A=\{5,7,3\}$
- set builder (predicates): $S=\{x \mid P(x)\}$
- Cardinality $|S|$
- number of (distinct) elements $|A|=3$
- No Assignment is released today!
- No Class on Thanks Giving! Oct $8^{\text {th }}$
- Test 1 on Oct $15^{\text {th, }}$
-Ch1.1-1.8
- 7pm-8:20pm
- Location: SLH F
- Lecture: 8:40pm, SLH A.

Exercises

1. What is the cardinality of $\{\varnothing,\{\varnothing,\{\varnothing\}\}\}$? What is its power set?
2. Prove that $A \subset B$ iff $P(A) \subset P(B)$.
3. Draw the Venn Diagrams for $A \cap \mathrm{~B} \cap \overline{\mathrm{C}} \cap D$

Review of Functions

- A function from A to B is an assignment of exactly one element of B to each element of A.
- grade: $S \rightarrow$ G

This is not a function!

- Every member of the domain must be mapped to a member of the co-domain

This is not a function!

- No member of the domain may map to more than one member of the co-domain

Graphs of Functions

- The Graph of Floor function R->Z
$\cdot\lfloor x\rfloor$ is the largest integer that is less than or equal to x. ordered pairs $\{(a, b) \mid a \in A$ and $f(a)=b\}$
- Example: The graph of f:Z->Z where $f(x)=2 x+1$

- Let f and g be functions from A to R. Then $f_{1}+f_{2}$ and $f_{1} f_{2}$ are also functions from A to R $\circ\left(f_{1}+f_{2}\right)(x)=f_{1}(x)+f_{2}(x)$
$\circ\left(f_{1} f_{2}\right)(x)=f_{1}(x) f_{2}(x)$
- Example:
- $\mathrm{f}_{1}(\mathrm{x})=\mathrm{x}, \mathrm{f}_{2}(\mathrm{x})=\mathrm{x}^{2}$
- $\left(\mathrm{f}_{1}+\mathrm{f}_{2}\right)(\mathrm{x})=\mathrm{x}+\mathrm{x}^{2}$
- $\left(\mathrm{f}_{1} \mathrm{f}_{2}\right)(\mathrm{x})=\mathrm{x}^{3}$
- Notice the difference
between $\mathrm{f} \circ \mathrm{g}$ and fg

Monotonic Functions

The domain and codomain of f are subsets of R. x, y are in the domain of f and $x<y$.
f is (monotonically) increasing if $f(x) \leq f(y)$
f is strictly increasing if $f(x)<f(y)$
f is (monotonically) decreasing if $f(x) \geq f(y)$
f is strictly decreasing if $f(x)>f(y)$

Increasing

Decreasing

More Exercises for functions

- Show that $\lceil x+n\rceil$ is $\lceil x\rceil+n$ for $x \in R$ and $n \in Z$.
- Proof:
- Assume $\lceil x\rceil=m$.
- $\mathrm{m}-1<\mathrm{x} \leq \mathrm{m}$
- $\mathrm{n}+\mathrm{m}-\mathrm{l}<\mathrm{x}+\mathrm{n} \leq \mathrm{m}+\mathrm{n}$
- $\lceil\mathrm{x}+\mathrm{n}\rceil=\mathrm{m}+\mathrm{n}=\lceil\mathrm{x}\rceil+\mathrm{n}$
- Q.E.D.

More Exercises for functions

- Show that $\lfloor 2 x\rfloor$ is $\lfloor x\rfloor+\lfloor x+1 / 2\rfloor$ for $x \in R$.
- Proof:

More Exercises for functions

- Changing bases: In general need to go through the decimal representation
- E.g: $101_{7}=$? 9
- $101_{7}=1 * 7^{2}+0 * 71+1 * 70=50$
- Decimal to Base 9:
- $\mathrm{d}_{1}=\mathrm{n}$ rem $9=5, \mathrm{n}=\mathrm{n} \operatorname{div} 9=5$
- $\mathrm{b}_{2}=\mathrm{n}$ rem $9=5, \mathrm{n}=\mathrm{n} \operatorname{div} 9=0$.
- STOP
- So $101_{7}=55_{9}$

Assume $x=n+e$ where $n \in Z, e \in R$ and $0 \leq e<1$.
Case 1: $0 \leq \mathrm{e}<1 / 2$
$\lfloor 2 x\rfloor=\lfloor 2 n+2 e\rfloor=2 n(0 \leq 2 e<1)$
$\circ\lfloor x\rfloor=\lfloor n+e\rfloor=n(0 \leq e<1 / 2)$
$\lfloor x+1 / 2\rfloor=\lfloor n+e+1 / 2\rfloor=n(1 / 2 \leq e+1 / 2<1)$
So, $\lfloor 2 x\rfloor=\lfloor x\rfloor+\lfloor x+1 / 2\rfloor$

- Case 2: $1 / 2 \leq e<1$
- $\lfloor 2 x\rfloor=\lfloor 2 n+2 e\rfloor=2 n+1(1 \leq 2 e<2)$
$\lfloor x\rfloor=\lfloor n+e\rfloor=n(1 / 2 \leq e<1)$
$\lfloor x+1 / 2\rfloor=\lfloor n+e+1 / 2\rfloor=n+1(1 \leq e+1 / 2<11 / 2)$

More Exercises for functions

- Changing bases that are powers of 2:
- Can often use shortcuts.
- Binary to Octal:
- $10111101=275_{8}$
- Binary to Hexadecimal:
, 10111101 $=$ BD $_{16}$
- Hexadecimal to Octal: Go through binary, not decimal.

More Exercises for functions

- 1. Prove that a strictly increasing function from R to itself is one to one
- 2. Suppose that $f: Y->Z$ and $g: X->Y$ are invertible. Show that

$$
(\mathrm{f} \circ \mathrm{~g})^{-1}=g^{-1} \circ f^{-1}
$$

Sequences

- A sequence is an ordered list, possibly infinite, of elements
notated by $\left\{\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3} \ldots\right\}$ or $\left\{a_{i}\right\}_{i=1}^{k}$
where k is the upper limit (usually ∞)
- A sequence is a function from a subset of the Z (usually $\{0,1,2, \ldots\}$) to another set
- a_{n} is the image of the the integer n. We call a_{n} a term of the sequence, and n is its index or subscript

Arithmetic Progressions

- An arithmetic progression is a sequence of the form
$a, a+d, a+2 d, a+3 d, \ldots, a+(n-1) d, \ldots$
a is the initial term
d is the common difference
- E.g.
- $\{-1,3,7,11, \ldots\}$
$\circ\{7,4,1,-2, \ldots\}$

Geometric Progressions

- An geometric progression is a sequence of the form

$$
a, a r, a r^{2}, a r^{3}, \ldots, a r^{n}, \ldots
$$

a is the initial term
r is the common ratio

Useful Sequences

- \{n²\}: 1, 4, 9, 16, 25,
- $\left\{\mathrm{n}^{3}\right\}: 1,8,27,64,125, \ldots$
- \{n $\left.{ }^{4}\right\}: 1,16,81,256,343, \ldots$
- $\left\{2^{\text {n }}\right\}: 2,4,8,16,32, \ldots$
- $\left\{3^{n}\right\}: 3,9,27,81,243, \ldots$
- \{n!\}: 1, 2, 6, 24, 120, ...
- $\left\{f_{n}\right\}: 1,1,2,3,5,8, \ldots$
- $\{1,-1,1,-1,1, \ldots\}$
- $\{2,10,50,250,1250, \ldots\}$

Series

- A series is the sum of the terms of a sequence

$$
S=a_{1}+a_{2}+a_{3}+a_{4}+\ldots
$$

- Consider the sequence $S_{1}, S_{2}, S_{3}, \ldots S_{n}$, where $\mathrm{S}_{\mathrm{i}}=\mathrm{a}_{1}+\mathrm{a}_{2}+\ldots+\mathrm{a}_{\mathrm{i}}$

In general we would like to evaluate sums of series - useful in algorithm analysis.
e.g. what is the total time spent in a nested loop?

Summations

- Given a sequence $\left\{a_{i}\right\}$ the summation notation for its terms $a_{m}, a_{m+1}, \ldots, a_{n}$

$$
\sum_{i=m}^{n} a_{i}, \quad \sum_{i=m}^{n} a_{i}, \text { or } \quad \sum_{m \leq i \leq n} a_{i}
$$

represent $a_{m}+a_{m+1}+\ldots+a_{n}$

- E.g.

$$
\begin{aligned}
& r^{0}+r^{1}+r^{2}+\ldots+r^{n}=\sum_{i=1}^{n} r^{i} \\
& \frac{1}{2}+\frac{2}{3}+\frac{3}{4}+\ldots+=\sum_{i=1}^{\infty} \frac{i}{i+1}
\end{aligned}
$$

Summation of Arithmetic Progression

Summation of Geometric Progression

- Given a geometric progression $a, a^{2}, a r^{3}, \ldots$, $a r^{n}$, its summation is

$$
\sum_{i=0}^{n} a r^{i}= \begin{cases}\frac{a r^{n+1}-a}{r-1} & \text { if } \mathrm{r} \neq 1 \\ (n+1) a & \text { if } \mathrm{r}=1\end{cases}
$$

- Proof on board
- You should also be able to determine the sum if the index starts at k and/or ends at $n-1$, $n+1$, etc.

Infinite series

- Let x be a real number with $|\mathrm{x}|<1$. Find

$$
\sum_{i=0}^{\infty} x^{i}
$$

- How about $|x| \geq 1$?
- Need to be very careful with infinite series
- In general, tools from calculus are needed to know whether an infinite series sum exists.
- loop 1: for $\mathrm{i}=1$ to 4
- loop 2: for $\mathrm{j}=1$ to 3
$S=S+i j$

Double Summation

$$
\begin{aligned}
& \sum_{i=1}^{4} \sum_{j=1}^{3}(i j) \\
& =\sum_{i=1}^{4}(i+2 i+3 i) \\
& =\sum_{i=1}^{4}(6 i) \\
& =6+12+18+24=60
\end{aligned}
$$

Cardinality

- Recall: A set is finite if its cardinality is some (finite) integer n

Infinite sets

- Why do we care?
- Cardinality of infinite sets
- For two sets A and B
- Do all infinite sets have the same
- $|A|=|B|$ if and only if there is a bijection from A to B
- $|A| \leq|B|$ if there is an injection from A to B
$-|A|=|B|$ if $|A| \leq|B|$ and $|B| \leq|A|$
- $|\mathrm{A}| \leq|\mathrm{B}|$ if $\mathrm{A} \subseteq \mathrm{B}$
cardinality?

Countability

- A set is countable if
- Countability implies that there is a listing of
- it is finite or
- it has the same cardinality as the set of the positive integers Z^{+}i.e. $|A|=\left|Z^{+}\right|$. The set is countably infinite
- Fact (Will not prove): Any subset of a
- We write $|\mathrm{A}|=|\mathrm{Z}+|=\mathrm{N}_{0}=$ aleph null
- A set that is not countable is called uncountable
- Proving the set is countable involves (usually) constructing an explicit bijection with Z^{+}
- Show that the set of odd positive integers S is countable.
- Proof:

To show that S is countable, we will show a bijective function between Z^{+}and S .
Consider $\mathrm{f}: \mathrm{Z}^{+}->\mathrm{S}$ be such that $\mathrm{f}(\mathrm{n})=2 \mathrm{n}-1$.
To see f is one-to-one, suppose that $f(n)=f(m)$, then $2 n$ $1=2 m-1$, so $n=m$.
To see f is onto, suppose that $t \in S$, i.e. $t=2 k-1$ for some positive integer k. Hence $t=f(k)$. Q.E.D.

The integers are countable

- Write them as

$$
0,1,-1,2,-2,3,-3,4,-4, \ldots \ldots
$$

- Find a bijection between this sequence and $1,2,3,4, \ldots$. .
Notice the pattern:
$1 \rightarrow 0 \quad 2 \rightarrow 1$
$3 \rightarrow-1 \quad 4 \rightarrow 2$
$5 \rightarrow-2 \quad 6 \rightarrow 3$
So $f(n)=n / 2$ if n even

$$
-(n-1) / 2 \text { o.w. }
$$

The rationals are countable

- Step 1. Show that $\mathbf{Z}^{+} \times \mathrm{Z}^{+}$is countable.
, Step 2. Show injection between $\mathrm{Q}^{+}, \mathrm{Z}^{+} \times \mathrm{Z}^{+}$.
- Step 3. Construct a bijection from Q^{+}to Q

