

Constructive Existence Proof (Example)

There exists integers x,y,z satisfying $x^2+y^2 = z^2$

Proof:
$$x = 3$$
, $y = 4$, $z = 5$.

Disproof by Counterexample

- ► How to prove $\forall x P(x)$ is not true? $\neg \forall x P(x) \equiv \exists x \neg P(x)$
- Find a counterexample c such that P(c) is false
- Example: All prime numbers are odd
- $\,\circ\,$ Proof: 2 is a prime number, and it is even.

Proof Strategies

- Finding proofs can be challenging
- Replace terms by their definitions
- $\,\circ\,$ Carefully analyze hypotheses and conclusion
- Choose a proof method
- Attempt to prove the theorem
- $\,\circ\,$ If it fails try different proof methods

Sets

- Unordered collection of distinct objects (called the elements, or members, of the set)
- Elements could be:
- Positive integers
- Sides of a coin
- Students enrolled in 1019A
- Sets

Set Membership

- → $a \in A$: a is an element of the set A
- ▶ $a \notin A$: a is not an element of the set A
- Example:
 - V: {a,e,i,o,u} -- a∈V, b∉V
 - T: {1, 2, 3, 4, ..., 99} -- 55∈T, 100∉T
 - \circ S: {a, 2, {a}} -- a∈S, {a}∈S, {{a}}∉S

Describing Sets

Roster method

{a, b, c, d}

Set builder notation (specification by predicates):

$S = \{x ~|~ P(x)\}$

- $^{\circ}\,$ S contains all the elements which make P(x) true
- \circ Characterize all elements in the set by stating
- properties they must have
- E.g. $O = \{x \mid x \text{ is an odd positive integer less than 6}\}$

Venn Diagrams: Rectangle, circles, points Rectangle: Universal set U contains all the objects under consideration Circle and other geometrical figures: Sets Points: Elements Often used to show relationships between sets

Subsets

Subset $A \subseteq B$: Every element of A is also an element of B.

∀x(x∈A→x∈B)

- Proper subset A⊂B: A⊆B but A≠B
 ∀x(x∈A→x∈B) ∧ ∃x(x∈B∧x∉A)
- A=B if and only if $A\subseteq B$ and $B\subseteq A$

Example:

- Let f: {a,b,c}->{1,2,3} be such that f(a)=2, f(b)=1, f(c)=3.
- Let f: $R \rightarrow R$ be such that $f(x) = x^2$
- Let f: $R^+ -> R^+$ be such that $f(x) = x^2$

Composition of Functions • Let g: $A \rightarrow B$, f: $B \rightarrow C$. The composition of f and g, denoted $f \circ g(x)$ is the function from A to C defined by $f \circ g(x) = f(g(x))$ \blacktriangleright Note that $f\circ g$ is not defined unless the range of g is a subset of the domain of f. Tom Tom Pass *.Pass Vivian Vivian →Fail - Fail Frank Frank g $f\circ g$

Proofs

Practice proofs techniques and strategies.

- Sets
 - Understand the concept of sets, set membership, subset, cardinality, powerset, cartesian product of sets. Understand the relationship between set operations and logic operations. Practice proving set identities
- Functions
 - Understand the concept of function. Practice distinguishing injection (1-1), surjection (onto) and bijection. Practice finding the composition and inverse of functions