Math/CSE 1019C:
Discrete Mathematics for Computer Science Fall 2012

Jessie Zhao
jessie@cse.yorku.ca

Course page: http://www.cse.yorku.ca/course/1019

Exercises

- If $\mathrm{n}+1$ balls are distributed among n bins prove that at least one bin has more than 1 ball
- Prove by contradiction
- Prove $|x-y| \leq|x|+|y|$ for all real number x and y .
- Prove by cases.

Review of Proofs

- Inference Rules
$\because \because$ Hypothesis
\therefore conclusion
- Direct Proof
- Including proof by cases, proof by exhaustion
- Proof by contraposition
- Proof by contradiction
- Proof of Equivalences
- Uniqueness proofs
- Disproof by counterexample
-

Proof of Existence

- How to prove $\exists \mathrm{xP}(\mathrm{x})$?
- Constructive existence proof: Find an element c such that $\mathrm{P}(\mathrm{c})$ is true
- Nonconstructive existence proof:
- Prove $\exists \mathrm{XP}(\mathrm{x})$ is true in some other way
- Assume no c exists which makes P(c) true and derive a contradiction

Constructive Existence Proof
 (Example)

Nonconstructive Existence proof

 (Example)There exists integers x, y, z satisfying

- There exists irrational x, y, such that x^{y} is rational
$x^{2}+y^{2}=z^{2}$
- Proof (by non-construction):
- By previous example: $\sqrt{ } 2$ is irrational
- For $(\sqrt{ } 2)^{\sqrt{2}}$
- Case 1 : If $(\sqrt{ } 2)^{\sqrt{2}}$ is rational, then the theorem is proved
- Case 2: If $(\sqrt{ } 2)^{\sqrt{2}}$ is irrational, ($\left.(\sqrt{ } 2)^{\sqrt{ } 2}\right)^{\sqrt{2}}=(\sqrt{ } 2)^{2}$ $=2$ is rational
Q.E.D.
- Attention: We did not find the actual pair of irrational x, y. It could be $x=\sqrt{ } 2, y=$
$\sqrt{ } 2$, or $x=(\sqrt{ } 2)^{\sqrt{ } 2}, y=\sqrt{ } 2$.

Disproof by Counterexample

- How to prove $\forall x P(x)$ is not true?

$$
\neg \forall \mathrm{xP}(\mathrm{x}) \equiv \exists \mathrm{x} \neg \mathrm{P}(\mathrm{x})
$$

- Find a counterexample c such that $\mathrm{P}(\mathrm{c})$ is false
- Example: All prime numbers are odd - Proof: 2 is a prime number, and it is even.

Sets

- Unordered collection of distinct objects (called the elements, or members, of the set)
Elements could be:
- Positive integers
- Sides of a coin
- Students enrolled in 1019A
- Sets

Proof Strategies

- Finding proofs can be challenging
- Replace terms by their definitions
- Carefully analyze hypotheses and conclusion

Choose a proof method
Attempt to prove the theorem

- If it fails try different proof methods

Set Membership

- $a \in A: a$ is an element of the set A
- $a \notin A$: a is not an element of the set A
- Example:
- V: \{a,e,i,o,u\} -- a $\in \mathrm{V}, \mathrm{b} \notin \mathrm{V}$
- T: $\{1,2,3,4, \ldots, 99\}--55 \in T, 100 \notin \mathrm{~T}$
- S : $\{a, 2,\{a\}\}--a \in S,\{a\} \in S,\{\{a\}\} \notin$

Describing Sets

- Roster method

$$
\{a, b, c, d\}
$$

- Set builder notation (specification by predicates):

$$
S=\{x \mid P(x)\}
$$

- S contains all the elements which make $P(x)$ true
- Characterize all elements in the set by stating properties they must have
E.g. $O=\{x \mid x$ is an odd positive integer less than 6$\}$

Venn Diagrams

- Venn Diagrams: Rectangle, circles, points
- Rectangle: Universal set U contains all the objects under consideration
- Circle and other geometrical figures: Sets
- Points: Elements
- Often used to show relationships between sets

Set Examples

- $S=\{1,3,5\}$
- $S=\{x \mid x$ is an odd positive integer less than 6\}
- $S=\{x \mid x$ is odd and $x>0$ and $x<6\}$

Important Sets

- Set of natural numbers: $N=\{0,1,2,3, \ldots\}$
- Set of integers: $Z=\{\ldots,-2,-1,0,1,2, \ldots\}$
- Set of positive integers: $\mathrm{Z}^{+}=\{1,2,3, \ldots\}$
- Set of rational numbers: $Q=\{p / q \mid p \in Z, q \in Z$,
- and $\mathrm{q} \neq 0$ \}
- Set of real numbers: R
- Intervals

Size of Sets

, Let S be a set

- Cardinality $|\mathrm{S}|$: number of (distinct) elements
- $\mathrm{a}, \mathrm{b}]=\{\mathrm{x} \mid \mathrm{a} \leq \mathrm{x} \leq \mathrm{b}\}$
- $[\mathrm{a}, \mathrm{b})=\{\mathrm{x} \mid \mathrm{a} \leq \mathrm{x}<\mathrm{b}\}$
- $(\mathrm{a}, \mathrm{b}]=\{\mathrm{x} \mid \mathrm{a}<\mathrm{x} \leq \mathrm{b}\}$
- $(\mathrm{a}, \mathrm{b})=\{\mathrm{x} \mid \mathrm{a}<\mathrm{x}<\mathrm{b}\}$
, In Computer Science, a data type is the
- Finite set: cardinality is some finite integer n
- Infinite set: a set that is not finite
- Special sets
- Empty set: \varnothing or \{ \}
- Cardinality=?
concept of a set
- Singleton set: A set with one element
- Boolean
- Integer

Equivalence of Sets

Subsets

Two sets A and B are equal iff they have the

- Subset $\mathrm{A} \subseteq \mathrm{B}$: Every element of A is also an element of B.

$$
A=B \text { iff } \forall x(x \in A \hookrightarrow x \in B)
$$

- $\{1,2,3\}=\{3,1,2\}$
$\circ\{1,1,1\}=\{1\}$
$\{\varnothing, \varnothing\}=\{\varnothing\} \neq \varnothing$
Z $\neq \mathrm{N}$
- Proper subset $A \subset B$: $A \subseteq B$ but $A \neq B$
$\forall x(x \in A \rightarrow x \in B) \wedge \exists x(x \in B \wedge x \notin A)$
- $A=B$ if and only if $A \subseteq B$ and $B \subseteq A$
, Subset Venn Diagrams

Special Subsets

- S \subseteq S
- $\varnothing \subseteq S$
$-S \subseteq U$

Cartesian Products

- The Cartesian product of A with B, denoted by AXB is the set of ordered pairs

$$
A X B=\{<a, b>\mid a \in A \wedge b \in B\}
$$

Set Operations

- Union: $A \cup B=\{x \mid(x \in A) \vee(x \in B)\}$
- Intersection: $A \cap B=\{x \mid(x \in A) \wedge(x \in B)\}$
- Disjoint sets: A, B are disjoint iff $A \cap B=\varnothing$
- Difference: $A-B=\{x \mid(x \in A) \wedge(x \notin B)\}$
- Complement: A^{c} or $\overline{\mathrm{A}}=\{\mathrm{x} \mid \mathrm{x} \notin \mathrm{A}\}=\mathrm{U}-\mathrm{A}$

Example: $\mathrm{A}=\{\mathrm{a}, \mathrm{b}\}, \mathrm{B}=\{1,2,3\}$

- $A \times B=\{<a, 1>,<a, 2>,<a, 3>,<b, 1>,<b, 2>,<b, 3>\}$

BXA $=\{<1, a>,<1, b>,<2, a>,<2, b>,<3, a>,<3, b>\}$
, If $|A|=m$ and $|B|=n$, then $|A \times B|=m n$.

- The cartesian product of anything with \varnothing is \varnothing.

Power Set

- Power Set $\mathrm{P}(\mathrm{S})$: set of all subsets of S
$P(S)$ includes S, \varnothing
- If $|S|=n$ then $|P(S)|=2^{n}$
- E.G.

If $\mathrm{A}=\{\mathrm{a}, \mathrm{b}\}$, then $\mathrm{P}(\mathrm{A})=\{\varnothing,\{\mathrm{a}\},\{b\},\{\mathrm{a}, \mathrm{b}\}\}$
Tricky question: What is $\mathrm{P}(\varnothing)$ and $\mathrm{P}(\{\varnothing\})$?

- $P(\varnothing)=\{\varnothing\}$
- $P(\{\varnothing\})=\{\varnothing,\{\varnothing\}$

Union $A \cup B$

- $A \cup B=\{x \mid(x \in A) \vee(x \in B)\}$

Difference A-B

- $A-B=\{x \mid(x \in A) \wedge(x \notin B)\}$

Complement A^{\prime} or $\overline{\mathrm{A}}$

- Complement: A^{c} or $\overline{\mathrm{A}}=\{\mathrm{x} \mid \mathrm{x} \notin \mathrm{A}\}=\mathrm{U}-\mathrm{A}$

Example

- For $U=\{0,1,2,3,4,5,6,7,8,9,10\}$,

Set Identities

- Set identities correspond to logical equivalences
- Important Set Identities: Page 130
- How to prove the set identities?

Show each set is a subset of the other - Use membership tables

- An example: De Morgan's Law
$B-A=\{6,7,8\}$
$\bar{A}=\{6,7,8,9,10\}$

Example: De Morgan

Prove: $\quad \overline{A \cup B}=\overline{\mathrm{A}} \cap \overline{\mathrm{B}}$
(1) Showing $\forall \mathrm{x}(\mathrm{x} \in \overline{A \cup B} \leftrightarrow \mathrm{x} \in \bar{A} \cap \bar{B})$

Let x be arbitrary

Example: De Morgan

$$
\begin{aligned}
& \mathrm{x} \in \overline{A \cup B} \\
\equiv \mathrm{x} \notin \mathrm{~A} \cup \mathrm{~B} & \\
\equiv \neg(\mathrm{x} \in \mathrm{~A} \cup \mathrm{~B}) & \text { Def. of complement } \\
\equiv \neg(\mathrm{x} \in \mathrm{~A} \vee \mathrm{x} \in \mathrm{~B}) & \text { Def. of } \notin \\
\equiv \neg(\mathrm{x} \in \mathrm{~A}) \wedge \neg(\mathrm{x} \in \mathrm{~B}) & \text { Def. of } \cup \\
\equiv \mathrm{x} \notin \mathrm{~A} \wedge \mathrm{x} \notin \mathrm{~B} & \text { De Morgan's las } \\
\equiv \mathrm{x} \in \overline{\mathrm{~A}} \wedge \mathrm{x} \in \overline{\mathrm{~B}} & \text { Def. of } \notin \\
\equiv \mathrm{x} \in \overline{\mathrm{~A}} \cap \overline{\mathrm{~B}} & \text { Def. of complement } \\
& \text { Def. of } \cap
\end{aligned}
$$

Example: De Morgan

(2) Proof by using a membership table

A	B	$A \cup B$	$\overline{A \cup B}$	\bar{A}	\bar{B}	$\bar{A} \cap \bar{B}$
1	1	1	0	0	0	0
1	0	1	0	0	1	0
0	1	1	0	1	0	0
0	0	0	1	1	1	1

Generalized Unions

- $A \cup B \cup C$

- Union of a collection of sets

$$
\bigcup_{i=1}^{n} A_{i}=A_{1} \cup A_{2} \cup \ldots \cup A_{n}
$$

Generalized Intersections

- $A \cap B \cap C$

- Intersection of a collection of sets

$$
\bigcap_{i=1}^{n} \mathrm{~A}_{\mathrm{i}}=\mathrm{A}_{1} \cap \mathrm{~A}_{2} \cap \ldots \cap \mathrm{~A}_{\mathrm{n}}
$$

Introduction to functions

Students
Grades

Introduction to functions

- A function from A to B is an assignment of exactly one element of B to each element of A.
- Function
- Let $A=B=$ integers, $f(x)=x+10$

。Let $A=B=$ integers, $f(x)=x^{2}$
, Formal definition:
$f: A \rightarrow B$ is a subset of $A x B$ such that

- Not a function
$\therefore A=B=$ real numbers $f(x)=\sqrt{x}$
$\forall x(x \in A \rightarrow \exists y(y \in B \wedge<x, y>\in f))$
and
$\left(\left\langle x, y_{1}\right\rangle \in f \wedge\left\langle x, y_{2}\right\rangle \in f\right) \rightarrow y_{1}=y_{2}$

Example

- $A=B=$ real numbers, $f(x)=1 / x$

Terminology

- For a function $f: A \rightarrow B$
- A is called the domain
$\circ B$ is called the co-domain
- If $f(x)=y$
y is called the image of x under f. The set of all images is called the range of f, denoted by $f(A)$
- Note: range $(f)=\{y \mid \exists x \in A f(x)=y\} \subseteq B$
x is called a preimage of y

- $f: S \rightarrow G$

The domain of $\mathrm{f}: \mathrm{S}=\{\mathrm{Simmy}$, George, Steve, Frank, Vivian\}
The co-domain of $\mathrm{f}: \mathrm{G}=\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{F}\}$

Surjections, Injections and Bijections

- f is surjective or onto if its range is equal to its codomain,
- i.e. for every y in B there must be an x in A such that $\mathrm{f}(\mathrm{x})=\mathrm{y}$.
, f is injective or one-to-one (denoted 1-1), if it maps distinct elements of the domain to distinct elements of the range,
i.e. if $a \neq b$ then $f(a) \neq f(b)$.
, f is bijective or one-to-one correspondence if it is surjective and injective.

Examples

- Let $A=B=R$, the real numbers. Determine f :

Inverse Functions

- Let f be a bijection from A to B, then the inverse of f, denoted $f^{-1}: B \rightarrow A$ is defined as

$$
f^{-1}(y)=x \text { iff } f(x)=y
$$

bijections:

- $f(x)=x$

A bijective function is called invertible

- $f(x)=x^{2}$
- $f(x)=x^{3}$
- $f(x)=|x|$

A non-bijective function is not invertible

- Pay attention: Inverse $f^{-1}(x) \neq 1 / f(x)$

- Example:
- Let $f:\{a, b, c\}->\{1,2,3\}$ be such that $f(a)=2, f(b)=1$, $\mathrm{f}(\mathrm{c})=3$.
- Let $\mathrm{f}: \mathrm{R}->\mathrm{R}$ be such that $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}$
- Let $f: R^{+}->R^{+}$be such that $f(x)=x^{2}$

Example

Special functions

- Identity $\operatorname{Id}(x)=x$

Note: $\mathrm{f}^{\circ} \mathrm{f}^{-1=\mathrm{f}-1 \circ \mathrm{f}=\mathrm{ld} \mathrm{l}}$
defined by $g(x)=x^{2}$.

- What is $\mathrm{f} \circ \mathrm{g}(\mathrm{x})$?
- What is $\mathrm{g} \circ \mathrm{f}(\mathrm{x})$?
, Floor
- Solution:
- Ceiling
$\mathrm{f} \circ \mathrm{g}(\mathrm{x})=\mathrm{f}(\mathrm{g}(\mathrm{x}))=\mathrm{f}\left(\mathrm{x}^{2}\right)=2\left(\mathrm{x}^{2}\right)=2 \mathrm{x}^{2}$
- DecimalToBinary
$g \circ f(x)=g(f(x))=g(2 x)=(2 x)^{2}=4 x^{2}$
- Note: $f \circ g(x)$ and $g \circ f(x)$ are not equal
- BinaryToDecimal

Special functions

Reading and Notes

- BinaryToDecimal

```
\circn=1001
    n=1*\mp@subsup{2}{}{3}+0*\mp@subsup{2}{}{2}+0*\mp@subsup{2}{}{1}+1*\mp@subsup{2}{}{0}=9
```


- DecimalToBinary

- $\mathrm{n}=7$
$\mathrm{b}_{1}=\mathrm{n}$ rem $2=1, \mathrm{n}=\mathrm{n} \operatorname{div} 2=3$
$\mathrm{b}_{2}=\mathrm{n}$ rem $2=1, \mathrm{n}=\mathrm{n} \operatorname{div} 2=1$
$\mathrm{b}_{3}=\mathrm{n}$ rem $2=1, \mathrm{n}=\mathrm{n} \operatorname{div} 2=0$.
STOP
- Read Section 1.8, 2.1-2.3
- Proofs
- Practice proofs techniques and strategies.
- Sets

Understand the concept of sets, set membership, subset, cardinality, powerset, cartesian product of sets. Understand the relationship between set operations and logic operations. Practice proving set identities
, Functions
Understand the concept of function. Practice distinguishing injection (1-1), surjection (onto) and bijection. Practice finding the composition and inverse of functions

