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� Lecture Notes, readings and exercises
◦ Go to course website, and click on “Lectures”

� Assignment 1
◦ Go to course website, and click on ”Assignments”
◦ Due on Sep 24th, 1:00pm
◦ No late submissions
◦ Read the academic honesty and the instructions 

before you work on your assignment.

� About Moodle
� Include Announcements and links to the course 

website.
� Course website is the best place to check.
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� When update?
◦ Lecture notes: One day before the lecture
◦ Assignments: Same day of the lecture
◦ Readings for the next lecture: One day after the 

lecture
◦ Announcements

� TA office hours
� Monday 1-2pm, Tuesday 7-8pm (LAS 2013) 
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� Proposition: Declarative & (True/False)
� Operations: ¬ ∧ ∨ → ↔
◦ p → q ≡ ¬ p ∨ q 
◦ p ↔ q ≡ (p → q) ∧ (q → p)

� Logically Equivalence
◦ Use truth table
◦ Use laws to prove (Page27)
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� How many rows appear in a truth table?

◦ ¬ p ∨ p
◦ p ∧ q, 
◦ ¬ p ∧ q ∧ (r ∨ q)
◦ More? 
◦ 2ⁿ
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� p → q ≡ ¬ p ∨ q 
� Value is False when p is true and q is false (by 

definition & truth table)

� Example: 
� p: Emily buys the ticket

� q: she goes to the concert

� p → q: If Emily buys the ticket, she goes to the concert.
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pppp qqqq p p p p →→→→ qqqq ¬¬¬¬ p p p p ¬¬¬¬ p p p p ∨∨∨∨ q q q q 

T T T F T Emily buys the ticket, and she 
goes to the concert.

T F F F F Emily buys the ticket, and she 
does not go to the concert.

F T T T T Emily does not buy the ticket, and 
she goes to the concert.

F F T T T Emily does not buy the ticket, and 
she does not go to the concert.
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� Predicate: Proposition with variables
� Quantifiers 

� ∀ “For all…”
� ∃ “There exists…”

� Negation of quantifiers: 
◦ ¬ ∀x P(x) ≡ ∃ x ¬P(x)
◦ ¬ ∃ x P(x) ≡ ∀ x ¬P(x)
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� Domain: all the people
� P(x): x is a York student
� Q(x): x can speak French
� Every York student can speak French.
◦ ∀x (P(x) → Q(x))

� Some York students can speak French.
◦ ∃ x (P(x) ∧ Q(x))

� ∀ x (P(x) ∧ Q(x))
◦ All the people are York students and can speak 

French.

� ∀ ∃ have higher precedence than operators 
from Propositional Logic; 

� so ∀x P(x) ∨ Q(x) is not logically equivalent to 

∀x (P(x) ∨ Q(x))
� Recall order of operations: ∀ ∃, ¬, ∧, ∨, →,  ↔
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� Consider the statement Q: ∀x P(x) 
where P(x) is a given predicate over a 
given domain.

� What does “Q is false” mean?
◦ “Not for all x, P(x) is true”
◦ “There is at least one x, P(x) is not true”
◦ “There exists x, P(x) is false”
◦ So Negation of ∀x P(x) is ∃ x¬P(x) 

� What does “∃ x P(x) is false” mean?
◦ “There does not exist x, such that P(x) is true”
◦ “For all x, P(x) is not true”
◦ So Negation of ∃ x P(x) is ∀x¬P(x)

� One quantifier can be placed within the scope 
of the other

� Allows simultaneous quantification of many 
variables

∀x∃yP(x,y)

∀xQ(x)          Q(x): ∃yP(x,y)

� Think about loops in programming
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� Example: Show ∀x∃y(x+y=1) is true over the 
integers.

� Proof:
◦ Assume an arbitrary integer x. 
◦ To show that there exists a y that satisfies the 

requirement of the predicate, choose y = 1-x. 
Clearly y is an integer, i.e. in the domain.
◦ So x + y = x + (1-x) = 1.
◦ Since we assumed nothing about x (other than it is 

an integer), the argument holds for any integer x.
◦ Therefore, the predicate is TRUE.
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� When there are only one kind of quantifiers 
(universal or existential) in a statement, then 
the change of order does not change the 
meaning of the statement:
◦ ∀x∀yP(x,y) ≡ ∀y∀xP(x,y)
◦ ∃x∃yP(x,y) ≡ ∃y∃xP(x,y)
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� When there are different quantifiers, order 
matters

� In the Real Domain
◦ ∀x∃y(x<y)
� “For all x, there exists y, x<y”, “there is no max 

integer”

◦ ∃y∀x(x<y)
� “There exists y, for all x, x<y”, “there is a max integer”

◦ ∀x ∃y (x+y=0)
� “For every real number x there is a real number y 

such that, x+y=0”

◦ ∃y ∀x (x+y=0)
� “There is a real number y such that for every real 

number x, x+y=0”
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WhenWhenWhenWhen true?true?true?true? WhenWhenWhenWhen false?false?false?false?

∀x∀yP(x,y)
∀y∀xP(x,y)

P(x,y) is true for every
pair (x,y)

A pair (x,y) exists for
which P(x,y) is false

∀x∃yP(x,y) For every x, there is a y 
for which P(x,y) is true

There is an x such that 
P(x,y) is false for every y

∃x∀yP(x,y) There is an x for which 
P(x,y) is true for every y

For every x, there is a y for 
which P(x,y) is false

∃x∃yP(x,y)
∃y∃xP(x,y)

There is a pair (x,y) for
which P(x,y) is true

P(x,y) is false for all pairs
(x,y)
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� What is the truth value of the following:
◦ ∃x∀y(x+y=0) domain: integers
◦ ∃x∀y(xy=0) domain: integers
◦ ∀x≠0∃y(y=1/x) domain: real numbers
◦ ∀x∀y∃z(z=(x+y)/2) domain: integers
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� Same rules as before
� Ex 1: ¬∀x∃y(x<y)
� ≡ ∃x¬∃y(x<y)
� ≡ ∃x∀y¬(x<y)
� ≡ ∃x∀y(x≥y)
� Ex 2: ¬∃x∀y(x+y=0)
� ≡ ∀x¬∀y(x+y=0)
� ≡ ∀x∃y¬(x+y=0)
� ≡ ∀x∃y(x+y≠0)

17

� “The sum of two positive integers is always 
positive.”
◦ Rewrite in English using quantifiers and domain
� “For every pair of integers, if both integers are positive, 

then the sum of them is positive.”

◦ Introduce variables
� “For integers x and y, if x and y are positive, then x+y

is positive.”

◦ ∀x∀y((x>0)∧(y>0)→(x+y>0)) domain: integers

18
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� ∃x∀y∀z(friends(x,y)∧friends(x,z)∧(y≠z)→¬fri
ends(y,z))

� Domain of x, y and z: all students
◦ “There is a student x such that for all students y 

and all students z, if x and y are friends, x and z 
are friend and z and y are not the same student, 
then y and z are not friend.”
◦ “There is a student none of whose friends are also 

friends with each other.”
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� Read Ch1.1-1.5
� Practice translating English sentences to 

propositions and predicates
� Practice to use truth tables
� Practice proving logical equivalence by 

manipulating compound propositions
� Understand the difference and relationship 

between propositions, predicates and 
quantifications.
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� The reason for studying logic was to 
formalize derivations and proofs.

� How can we infer facts using logic?
� Let’s start with Propositional logic.
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� Simple inference rule (Modus Ponens) :

((p → q) ∧ p ) → q 
From (a) p → q and (b) p is TRUE, 
we can infer that q is TRUE. 
◦ (a) if these lecture slides are online then you can 

print them out
◦ (b)  these lecture slides are online
◦ Conclusion: You can print lecture slides out.
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p p p p →→→→ qqqq
pppp

∴ ∴ ∴ ∴ qqqq

� Similarly, From p → q, q → r and p is TRUE, 
we can infer that r is TRUE.

� From (p ∧ q) → r, p is TRUE, and q is TRUE, 
we can infer that r is TRUE

� Read more rules on Page 72
� Understand the rules
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� Universal instantiation 
If ∀x P(x) is true, we infer that P(a) is true for any 
given a, where a is a particular member of the 
domain
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∀∀∀∀x P(x)x P(x)x P(x)x P(x)

∴ ∴ ∴ ∴ P(a)P(a)P(a)P(a)
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� Universal Generalization
From P(c) is true for an arbitrary c arbitrary c arbitrary c arbitrary c in the 
domain, we can infer that ∀xP(x) is true.

� Read more rules on Page 76

P(c) is true for an arbitrary cP(c) is true for an arbitrary cP(c) is true for an arbitrary cP(c) is true for an arbitrary c

∴ ∴ ∴ ∴ ∀∀∀∀x P(x)x P(x)x P(x)x P(x)

� Why are proofs necessary?
� What is a proof?
◦ In Math, a proof is a step-by-step demonstration 

that a conclusion follows from some hypotheses. 
◦ In a each step use hypotheses, axioms, previously 

proven theorems, rules of inference, and logical 
equivalences such that the intermediate conclusion 
follows from previous step

� What details do you include/skip? 
◦ “Obviously”, “clearly”…
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� Theorem: A statement that can be proved to 
be true

� Axiom: A statement which is given to be true
� Lemma: A ‘pre-theorem’ that is needed to 

prove a theorem
� Corollary: A ‘post-theorem’ that follows from 

a theorem
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� Every step should follow from axioms or 
previous step(s) using an inference rule.

� Problems: 
◦ Axiomatization is hard and often long (see 

Appendix 1)
◦ Proofs are often very long and tedious
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� Direct proofs (including Proof by cases)
� Proof by contraposition
� Proof by contradiction
� Proof by construction
� Proof by Induction
� Other techniques
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� Leads from hypothesis to the conclusion
� How to prove p→q?
◦ Assume p is true
◦ Use rules of inference, axioms, lemmas, definitions, 

proven theorems, ...
◦ Conclude that q must be true

� Q.E.D. (used to signal the end of a proof)

30
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� The product of two odd integers is odd.
� Proof:
◦ Assume m, n are two odd integers
◦ By definition, m=2i+1 and n=2j+1 for some 

integers i and j.
◦ m·n=(2i+1)(2j+1)=4ij+2i+2j+1=2(2ij+i+j)+1
◦ Let k = 2ij+i+j, m·n = 2k+1
◦ By definition, m·n is odd
◦ Q.E.D.
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If n is an integer, then n(n+1)/2 is an 
integer

� Case 1: n is even.
◦ n = 2a, for some integer a
◦ So n(n+1)/2 = 2a*(n+1)/2 = a*(n+1), which is 

an integer.

� Case 2:  n is odd.
◦ n+1 is even, or n+1 = 2a, for an integer a
◦ So n(n+1)/2 = n*2a/2 = n*a, which is an 

integer.
Q.E.D.

� Check a relatively small number of cases
� A special type of proof by cases
� Example: Prove (n+1)² ≥3n if n is a positive 

integer with n≤4
Proof (by exhaustion):
◦ n=1
◦ n=2
◦ n=3
◦ n=4
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� Not all theorems can be proved by direct 
proof (Page 83, Example 3)

� Indirect Proofs: 
◦ Proof by contraposition
◦ Proof by contradiction
◦ Proof by construction
◦ Proof by Induction
◦ Other techniques

34

� How to prove p→q?
� Prove ¬q → ¬p is true

p→q ≡ ¬q → ¬p

� Example: If x+y≥2, where x,y are real 
numbers, then x≥1 or y≥1

� Proof (by contraposition): 
◦ Assume  “x≥1 or y≥1” is false. Then x<1 and y<1.
◦ X+y<2. This is the negation of “x+y≥2”, so the 

original conditional statement is true.
◦ Q.E.D.
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� Example: If n² is an even integer, then n is 
even.

� Proof:
◦ Assume n is an odd integer. Then n=2k+1 (k is 

integer)
◦ n² = (2k+1) ² = 4k²+4k+1 = 2(2k²+2k)+1
◦ Let integer m = (2k²+2k), then n²=2m+1.
◦ So n² is odd.
◦ Q.E.D.
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� How to prove p is true?
� If we have a proposition r, such that 

¬p→(r∧¬r) is true.
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pppp rrrr ¬p¬p¬p¬p r∧¬rr∧¬rr∧¬rr∧¬r ¬p¬p¬p¬p→→→→(r∧¬r) (r∧¬r) (r∧¬r) (r∧¬r) 

T T F F T

T F F F T

F T T F F

F F T F F
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� √2 is irrational
� Proof (by contradiction):
◦ Assume √2 is rational. Then √2=a/b such that 

a and b have no common factors (definition)
◦ Squaring and transposing: 2=a²/b², a² =2b².
◦ a² is even, so a is even (previous slide). i.e. ∃k 

a=2k
◦ a² = 4k² = 2b², so b² = 2k²
◦ b² is even, so b is even (previous slide). i.e. ∃m 

b=2m
◦ a and b have common factor 2 -- Contradiction! 

Q.E.D.

� How to prove p→q?
� If we can find a contradiction q, such that 

p∧¬q is FALSE
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pppp qqqq p→qp→qp→qp→q ¬q¬q¬q¬q p∧¬qp∧¬qp∧¬qp∧¬q

T T T F F

T F F T T

F T T F F

F F T T F

� If n is a positive integer, then n²≥n.
� Proof:
◦ Assume n²<n
◦ n is positive, so n≠0. 
◦ Divide both sides of n²<n by n. Then n<1. 
◦ Contradiction to “n is a positive integer”
◦ Q.E.D.
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� How to prove pսq is true?
P ս r ս s ս… ս q 

◦ Recall: to prove the logical equivalence of two 
formulas we can also use truth tables and 
developing a series of logical equivalences.

� Sometimes we need to prove p→q and q→p
pսq ≡ (p→q)∧(q→p)
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� Prove n is odd if and only if n² is odd.
◦ Part 1: prove if n is odd then n² is odd (We have 

proved it in previous slides)
◦ Part 2: prove if n² is odd then n is odd (by 

contraposition)
� Assume n is even. Then n=2k for some integer k

� n²=(2k) ²=4k²=2(2k²)=2m for some integer m
� Therefore n² is even
� Q.E.D

42
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� Sometimes we need to prove the existence of 
a unique element with a particular property. 

� Prove by two parts
◦ Existence: an element x with the property exists
◦ Uniqueness: if y≠x, then y does not have the 

property

� The equation ax+b=0, a,b real, a≠0 has a 
unique solution.

� Proof:
◦ Step 1. r=-b/a is a solution.
◦ Step 2. Suppose s ≠ r. 

Then (as+b)-(ar+b) = a(s-r)                       
Since a ≠0 and s ≠r, a(s-r) ≠0.
Then  as+b ≠ ar+b ≠0
s is not a solution.

Q.E.D.
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� One way to prove p is not true
� Find a counterexample such that p is false

� Show the following is FALSE: If x, y are 
irrational, x + y is irrational.
◦ Proof: x= √2, y= - √2 are irrational, and x+y=0 is 

rational.
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� Read Ch1.5-1.8
� Understand the order and scope of the 

quantification
� Practice translating between English and 

logical expressions
� Understand the proof methods
� Practice proof a lot!
� Recommended book: “How to read and do 

proofs” by Daniel Solow
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� Show that if n is an odd integer, there is a 
unique integer k such that n is the sum of 
k-2 and k+3.

� Prove that there are no solutions in 
positive integers x and y to the equation 
2x2 + 5y2 = 14.

� If x3 is irrational then x is irrational


