Math/CSE 1019C:
Discrete Mathematics for Computer Science Fall 2012

Jessie Zhao
jessie@cse.yorku.ca

Course page: http://www.cse.yorku.ca/course/1019

When update?

- Lecture notes: One day before the lecture
- Assignments: Same day of the lecture
- Readings for the next lecture: One day after the lecture
Announcements
- TA office hours
- Monday 1-2pm, Tuesday 7-8pm (LAS 2013)

Review (Ch 1.1-1.3)

- Proposition: Declarative \& (True/False)
- Operations: $\neg \wedge \vee \rightarrow \leftrightarrow$
- $p \rightarrow q \equiv \neg p \vee q$
- $p \leftrightarrow q \equiv(p \rightarrow q) \wedge(q \rightarrow p)$
- Logically Equivalence
- Use truth table
- Use laws to prove (Page27)
- $p \rightarrow q \equiv \neg p \vee q$
- Value is False when p is true and q is false (by definition \& truth table)
, Example:
- p: Emily buys the ticket
- q : she goes to the concert
- $\mathrm{p} \rightarrow \mathrm{q}$: If Emily buys the ticket, she goes to the concert.

Review (Ch 1.4-1.5)

- Predicate: Proposition with variables
- Quantifiers
- \forall "For all..."
- \exists "There exists..."

Negation of quantifiers:
$\stackrel{\neg}{ } \quad \mathrm{x} P(\mathrm{x}) \equiv \exists \mathrm{x} \neg \mathrm{P}(\mathrm{x})$

- $\neg \exists \mathrm{x} P(\mathrm{x}) \equiv \forall \mathrm{x} \neg \mathrm{P}(\mathrm{x})$

Translation into predicates:

- Domain: all the people
- $\mathrm{P}(\mathrm{x})$: x is a York student
- $\mathrm{Q}(\mathrm{x})$: x can speak French
- Every York student can speak French. $\forall \mathrm{x}(\mathrm{P}(\mathrm{x}) \rightarrow \mathrm{Q}(\mathrm{x}))$
- Some York students can speak French. $\exists \mathrm{x}(\mathrm{P}(\mathrm{x}) \wedge \mathrm{Q}(\mathrm{x}))$
What Does the following formula mean?
- $\forall x(\mathrm{P}(\mathrm{x}) \wedge \mathrm{Q}(\mathrm{x}))$

All the people are York students and can speak French.

Negation of Quantifiers

- Consider the statement Q: $\forall x \mathrm{P}(\mathrm{x})$ where $P(x)$ is a given predicate over a given domain.
- What does " Q is false" mean?
- "Not for all $x, P(x)$ is true"
- "There is at least one $x, P(x)$ is not true"
- "There exists $x, P(x)$ is false"
- So Negation of $\forall x P(x)$ is $\exists x \neg P(x)$
- What does " $\exists x \mathrm{P}(\mathrm{x})$ is false" mean?
- "There does not exist x, such that $P(x)$ is true"
- "For all $x, P(x)$ is not true"
- So Negation of $\exists x P(x)$ is $\forall x \neg P(x)$

Example: Show $\forall x \exists y(x+y=1)$ is true over the integers.

- Proof:
- Assume an arbitrary integer x.
- To show that there exists a y that satisfies the requirement of the predicate, choose $y=1-x$. Clearly y is an integer, i.e. in the domain.
So $x+y=x+(1-x)=1$.
Since we assumed nothing about x (other than it is an integer), the argument holds for any integer x.
Therefore, the predicate is TRUE.
- Think about loops in programming

Order of Nested Quantifiers

－When there are only one kind of quantifiers （universal or existential）in a statement，then the change of order does not change the meaning of the statement：

```
* }\forallx\forallyP(x,y)\equiv\forally\forallxP(x,y
。 \(\exists x \exists y P(x, y) \equiv \exists y \exists x P(x, y)\)
```

－When there are different quantifiers，order matters
，In the Real Domain
－$\forall x \exists y(x<y)$
－＂For all x ，there exists $y, x<y$＂，＂there is no max integer＂
。 $\exists y \forall x(x<y)$
－＂There exists y ，for all $x, x<y$＂，＂there is a max integer＂
。 $\forall x \exists y(x+y=0)$
－＂For every real number x there is a real number y such that，$x+y=0 "$
－$\exists y \forall x(x+y=0)$
－＂There is a real number y such that for every real number $x, x+y=0$＂

Quantifications of Two Variables

	When true？	When false？
$\begin{aligned} & \forall x \forall y P(x, y) \\ & \forall y \forall x P(x, y) \end{aligned}$	$\mathrm{P}(\mathrm{x}, \mathrm{y})$ is true for every pair（ x, y ）	A pair（ x, y ）exists for which $P(x, y)$ is false
$\forall x \exists y P(x, y)$	For every x ，there is a y for which $P(x, y)$ is true	There is an x such that $P(x, y)$ is false for every y
$\exists x \forall y P(x, y)$	There is an x for which $P(x, y)$ is true for every y	For every x ，there is a y for which $P(x, y)$ is false
$\begin{aligned} & \exists x \exists y P(x, y) \\ & \exists y \exists x P(x, y) \end{aligned}$	There is a pair（ x, y ）for which $P(x, y)$ is true	$P(x, y)$ is false for all pairs (x, y)

Examples

－What is the truth value of the following：
－$\exists x \forall y(x+y=0)$ domain：integers
－$\exists x \forall y(x y=0)$ domain：integers
－$\forall x \neq 0 \exists y(y=1 / x)$ domain：real numbers
－$\forall x \forall y \exists z(z=(x+y) / 2)$ domain：integers

Negation of Nested Quantifiers

－Same rules as before

English－＞Logical Expression

，＂The sum of two positive integers is always positive．＂
－Ex 1：$\neg \forall x \exists y(x<y)$
，三 $\exists \mathrm{x} \neg \exists \mathrm{y}(\mathrm{x}<\mathrm{y})$
，三 $\exists \mathrm{x} \forall \mathrm{y} \neg(\mathrm{x}<\mathrm{y})$
，$\equiv \exists \mathrm{x} \forall \mathrm{y}(\mathrm{x} \geq \mathrm{y})$
－Ex 2：$\neg \exists x \forall y(x+y=0)$
，$\equiv \forall \mathrm{x} \neg \forall \mathrm{y}(\mathrm{x}+\mathrm{y}=0)$
，$\equiv \forall x \exists y \neg(x+y=0)$
，$\equiv \forall x \exists y(x+y \neq 0)$
－Rewrite in English using quantifiers and domain
－＂For every pair of integers，if both integers are positive， then the sum of them is positive．＂
－Introduce variables
－＂For integers x and y ，if x and y are positive，then $x+y$ is positive．
－$\forall x \forall y((x>0) \wedge(y>0) \rightarrow(x+y>0))$ domain：integers

Logical Expression -> English

- $\exists x \forall y \forall z(f r i e n d s(x, y) \wedge$ friends $(x, z) \wedge(y \neq z) \rightarrow \neg f r i$ ends(y,z))
- Domain of x, y and z : all students
"There is a student x such that for all students y and all students z, if x and y are friends, x and z are friend and z and y are not the same student, then y and z are not friend."
"There is a student none of whose friends are also friends with each other."

Readings and notes

- Read Ch 1.1-1.5
- Practice translating English sentences to propositions and predicates
- Practice to use truth tables
- Practice proving logical equivalence by manipulating compound propositions
- Understand the difference and relationship between propositions, predicates and quantifications.

Proofs-Inference Rules

- The reason for studying logic was to formalize derivations and proofs.
-How can we infer facts using logic?
- Let's start with Propositional logic.
- Simple inference rule (Modus Ponens) :

$$
((p \rightarrow q) \wedge p) \rightarrow q
$$

From (a) $p \rightarrow q$ and (b) p is TRUE, we can infer that q is TRUE.

- (a) if these lecture slides are online then you can print them out
(b) these lecture slides are online

Conclusion: You can print lecture slides out.

$\therefore \mathbf{q}$

- Similarly, From $p \rightarrow q, q \rightarrow r$ and p is TRUE,

Inference Rules for quantified

 statements- Universal instantiation

If $\forall \mathrm{x} P(\mathrm{x})$ is true, we infer that $\mathrm{P}(\mathrm{a})$ is true for any given a, where a is a particular member of the domain

$$
\forall x P(x)
$$

$\therefore \mathrm{P}(\mathrm{a})$

- Read more rules on Page 72
- Understand the rules
- Universal Generalization

From $\mathrm{P}(\mathrm{c})$ is true for an arbitrary c in the domain, we can infer that $\forall \mathrm{xP}(\mathrm{x})$ is true.

$P(c)$ is true for an arbitrary c

$\therefore \forall \mathrm{xP}(\mathrm{x})$

- Read more rules on Page 76

Proofs-Introduction

- Why are proofs necessary?
- What is a proof?
- In Math, a proof is a step-by-step demonstration that a conclusion follows from some hypotheses.
- In a each step use hypotheses, axioms, previously proven theorems, rules of inference, and logical equivalences such that the intermediate conclusion follows from previous step
- What details do you include/skip?
"Obviously", "clearly"...

Terminologies

- Theorem: A statement that can be proved to

Logic-based proof

- Every step should follow from axioms or previous step(s) using an inference rule.
- Axiom: A statement which is given to be true
- Lemma: A 'pre-theorem' that is needed to prove a theorem
- Corollary: A 'post-theorem' that follows from a theorem
- Problems:
- Axiomatization is hard and often long (see Appendix 1)
- Proofs are often very long and tedious

Types of Proofs

- Direct proofs (including Proof by cases)
- Proof by contraposition
- Proof by contradiction
- Proof by construction

Direct Proof

- Leads from hypothesis to the conclusion
- How to prove $p \rightarrow q$?
- Assume p is true
- Proof by Induction
- Other techniques

Use rules of inference, axioms, lemmas, definitions, proven theorems, ...

- Conclude that q must be true
- Q.E.D. (used to signal the end of a proof)

Direct Proof (example)

- The product of two odd integers is odd.

Direct Proof (Proof by cases)

If n is an integer, then $\mathrm{n}(\mathrm{n}+1) / 2$ is an integer
, Proof:

- Assume m, n are two odd integers
- Case 1: n is even.
$\circ \mathrm{n}=2 \mathrm{a}$, for some integer a
- So $n(n+1) / 2=2 a^{*}(n+1) / 2=a^{*}(n+1)$, which is an integer. integers i and j.
$m \cdot n=(2 i+1)(2 j+1)=4 i j+2 i+2 j+1=2(2 i j+i+j)+1$
- Case 2: n is odd.
- Let $\mathrm{k}=2 \mathrm{ij}+\mathrm{i}+\mathrm{j}, \mathrm{m} \cdot \mathrm{n}=2 \mathrm{k}+1$
- $\mathrm{n}+1$ is even, or $\mathrm{n}+1=2 \mathrm{a}$, for an integer a

By definition, $m \cdot n$ is odd

- Q.E.D.
- So $n(n+1) / 2=n * 2 a / 2=n * a$, which is an integer.
Q.E.D.

Direct Proof (Proof by Exhaustion)

- Check a relatively small number of cases

Direct Proof (Limitation)

- Not all theorems can be proved by direct proof (Page 83, Example 3)
- Indirect Proofs:
- Proof by contraposition
- Example: Prove $(n+1)^{2} \geq 3 n$ if n is a positive

Proof by contraposition
Proof (by exhaustion):
Proof by contradiction

- $n=1$
- Proof by construction
- $n=2$
- Proof by Induction
- $n=3$
- Other techniques

Proof by contraposition

Proof by contraposition (example)

- How to prove $\mathrm{p} \rightarrow \mathrm{q}$?
- Prove $\neg q \rightarrow \neg p$ is true
- Example: If n^{2} is an even integer, then n is even.
- Proof:
- Assume n is an odd integer. Then $\mathrm{n}=2 \mathrm{k}+1$ (k is integer)
$\mathrm{n}^{2}=(2 \mathrm{k}+1)^{2}=4 \mathrm{k}^{2}+4 \mathrm{k}+1=2\left(2 \mathrm{k}^{2}+2 \mathrm{k}\right)+1$
Example: If $x+y \geq 2$, where x, y are real Let integer $m=\left(2 k^{2}+2 k\right)$, then $n^{2}=2 m+1$.
numbers, then $x \geq 1$ or $y \geq$
So n^{2} is odd.
- Assume " $x \geq 1$ or $y \geq 1$ " is false. Then $x<1$ and $y<1$.
Q.E.D.
- $X+y<2$. This is the negation of " $x+y \geq 2$ ", so the original conditional statement is true.
- Q.E.D.

Proof by Contradiction

- How to prove p is true?
- If we have a proposition r, such that $\neg p \rightarrow(r \wedge \neg r)$ is true.

p	r	$\neg \mathbf{p}$	$\mathbf{r \wedge \neg r}$	$\neg \mathrm{p} \rightarrow(\mathrm{r} \wedge \neg \mathrm{r})$
T	T	F	F	T
T	F	F	F	T
F	T	T	F	F
F	F	T	F	F

Proof by Contradiction (Conditional)

- How to prove $p \rightarrow q$?
- If we can find a contradiction q, such that $p \wedge \neg \mathrm{q}$ is FALSE

p	q	p $\rightarrow q$	$\neg \mathrm{q}$	$\mathrm{p} \wedge \neg \mathrm{q}$
T	T	T	F	F
T	F	F	T	T
F	T	T	F	F
F	F	T	T	F

Proof by Contradiction (example)

- $\sqrt{ } 2$ is irrational
- Proof (by contradiction):
- Assume $\sqrt{ } 2$ is rational. Then $\sqrt{ } 2=a / b$ such that a and b have no common factors (definition)
Squaring and transposing: $2=a^{2} / b^{2}, a^{2}=2 b^{2}$.
a^{2} is even, so a is even (previous slide). i.e. $\exists \mathrm{k}$ $a=2 k$
$\mathrm{a}^{2}=4 \mathrm{k}^{2}=2 \mathrm{~b}^{2}$, so $\mathrm{b}^{2}=2 \mathrm{k}^{2}$
b^{2} is even, so b is even (previous slide). i.e. $\exists \mathrm{m}$ $b=2 \mathrm{~m}$
a and b have common factor 2 -- Contradiction! Q.E.D.

Proof by Contradiction (Conditional example)

- If n is a positive integer, then $n^{2} \geq n$.
- Proof:

Assume $n^{2}<n$

- n is positive, so $\mathrm{n} \neq 0$.
- Divide both sides of $n^{2}<n$ by n. Then $n<1$.

Contradiction to " n is a positive integer"
Q.E.D.

Proof of Equivalences

- How to prove $p \leftrightarrow q$ is true?

$$
\mathrm{P} \leftrightarrow \mathrm{r} \leftrightarrow \mathrm{~s} \leftrightarrow \ldots \leftrightarrow \mathrm{q}
$$

Proof of Equivalences (Example)

- Prove n is odd if and only if n^{2} is odd.

Part 1: prove if n is odd then n^{2} is odd (We have proved it in previous slides)
Recall: to prove the logical equivalence of two formulas we can also use truth tables and developing a series of logical equivalences.
contraposition)

- Assume n is even. Then $n=2 k$ for some integer k
- $\mathrm{n}^{2}=(2 k)^{2}=4 k^{2}=2\left(2 k^{2}\right)=2 \mathrm{~m}$ for some integer m
- Therefore n^{2} is even
- Q.E.D

$$
p \leftrightarrow q \equiv(p \rightarrow q) \wedge(q \rightarrow p)
$$

Uniqueness proofs

- Sometimes we need to prove the existence of a unique element with a particular property.
- Prove by two parts

Existence: an element x with the property exists

Uniqueness proofs (Example)

- The equation $a x+b=0, a, b$ real, $a \neq 0$ has a unique solution.
- Proof:
- Step 1. $r=-b / a$ is a solution.

Uniqueness: if $y \neq x$, then y does not have the
Step 2. Suppose $s \neq r$.
Then $(a s+b)-(a r+b)=a(s-r)$
Since $a \neq 0$ and $s \neq r, a(s-r) \neq 0$.
Then $a s+b \neq a r+b \neq 0$
s is not a solution. Q.E.D.

Disproof by counterexample

- One way to prove p is not true
- Find a counterexample such that p is false

Readings and notes

- Read Ch1.5-1.8
- Understand the order and scope of the quantification
- Practice translating between English and logical expressions
- Understand the proof methods
- Practice proof a lot!
- Recommended book: "How to read and do proofs" by Daniel Solow

Examples

- Show that if n is an odd integer, there is a unique integer k such that n is the sum of $\mathrm{k}-2$ and $\mathrm{k}+3$.
- Prove that there are no solutions in positive integers x and y to the equation $2 x^{2}+5 y^{2}=14$.
- If x^{3} is irrational then x is irrational

