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� Class time:
◦ Monday: 19:00pm - 22:00pm

� Class location: SLH A
� Office hours 

◦ Monday 2:00pm - 4:00pm or by 

appointment (TEL 3056)

� Contact me by Email
◦ Use a York account
◦ Start your subject line with “[1019]”
◦ Sign with your full name
◦ Send messages in plain text

� TAs
◦ Arindam Das arindam@cse.yorku.ca

◦ Wendy Ashlock washlock@cse.yorku.ca

◦ Maria Angel Marquez Andrade cse01009@cse.yorku.ca

� TA office hours? Choose Two from the 
following
◦ (1) Mon: 1-2 pm
◦ (2) Tue: 1-2 pm
◦ (3) Tue: 7-8 pm
◦ (4) Tue: 8-9 pm
◦ (5) Wed: 7-8 pm
◦ (6) Wed: 8-9 pm
◦ (7) Thu: 8-9 pm
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� 7 assignments (15%) 

� 3 Tests (45%)

◦ Oct. 15st, Nov 5th, Nov 26th (tentative)

◦ No deferred tests

� Final Exam (40%) Dec. ? 

� Academic Honesty. 
◦ Solutions you hand in for homework assignments 

must be your own work. 
◦ Visit the class webpage for more details on academic 

policy.

� Use the Dropbox to submit your assignments.
� Locates in the 1st floor of LAS (previously known 

as CSE)
� Assignments submitted late will not be graded. 

The solutions will be posted when the deadline 
is reached.
◦ Missed assignments
� No reason: graded with 0
� With reason: transferred to final exam value

Assignments PolicyAssignments Policy
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Kenneth H. Rosen. 
Discrete Mathematics 
and Its Applications, 

7th Edition. 

McGraw Hill, 

2012.

We will focus on two major goals:

� Basic tools and techniques in discrete 
mathematics
◦ Propositional logic

◦ Set Theory

◦ Simple algorithms

◦ Induction, recursion

◦ Counting techniques

� Precise and rigorous mathematical 
reasoning
◦ Writing proofs
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� Ch 1: Logic and Proofs. 

� Ch 2: Sets, functions, sequences, sums. 

� Ch 3: Algorithms. 

� Ch 5: Induction and recursion. 

� Ch 6: Counting Techniques.

� Ch 8 Advanced counting techniques. 
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� Study with pen and paper

� Ask for help immediately

� Practice, practice, practice…

� Follow along in class rather than take notes

� Ask questions in class

� Read the book, not just the slides
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� A formal mathematical “language” for 
precise reasoning

•Truth values, truth tables 

•Boolean logic: ∨ ∧ ¬
•Implications: → ↔

� All of these are based on ideas we use 
daily to reason about things.  
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� Declarative sentence
� Must be either True or False.

Propositions: 

� CNN Tower is in Toronto
� Toronto is the capital of Canada.
� 1+1=2

Not propositions:
� There are x students in this class.
◦ Neither true or false

� Do you like this course?
◦ Not declarative

12
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Propositions can be represented by variables: 

� P: CNN Tower is in Toronto

� q: Toronto is the capital of Canada.

� r: 1+1=2

Truth value: True or False (T or F)

� p: T

� q: F

� r: T
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� ¬p  (“not p”)

� “It is not the case that p”

� p: Today is Monday

� ¬ p: Today is not Monday

� Truth tables

14

p ¬p

T F

F T

� Conjunction: p ∧ q  (“p and q”)
◦ p: It is blew freezing.

◦ q: It is snowing

◦ p ∧ q : It is blew freezing and snowing.

� p ∧ q is true if and only if both p and q are 
true and false otherwise
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p q p ∧ q

T T T

T F F

F T F

F F F

� p ∨ q   (“p or q”)
◦ p: A student taking 1019 is from CSE Department

◦ q: A student taking 1019 is form Math Department

◦ p ∨ q: A student taking 1019 is from CSE 
Department or Math Department.

� p ∨ q is false when both p and q are false and 
is true otherwise
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p q p ∨ q

T T T

T F T

F T T

F F F

� p ⊕ q  (“p or q, but not both”)
◦ In a steak house, you can either choose a salad or a 

soup, but not both

� p ⊕ q is true if p and q have different truth 
values and is false otherwise
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p q p ⊕ q

T T F

T F T

F T T

F F F

� Conditional  p → q (“if p then q”)

� p: hypothesis, q: conclusion
◦ If you turn in a homework late, it will not be 

graded 

� p → q is false when p is true and q is 
false, and true otherwise.
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p q p → q ¬ p ∨ q

T T T T

T F F F

F T T T

F F T T
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� p → q and ¬ p ∨ q are logically equivalent.

� p → q ≡ ¬ p ∨ q 

� Truth tables are the simplest way to prove 
such facts.

� We will learn other ways later.
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� Contrapositive of p → q is ¬q → ¬p

� Any conditional and its contrapositive are 
logically equivalent (have the same truth 
table) – Check by writing down the truth 
table.
◦ If you turn in a homework late, it will not be 

graded.

◦ If your homework is graded, you do not turn in the 
home work late.
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ConverseConverseConverseConverse

� Converse of p → q is q → p

� Not logically equivalent to conditional
◦ If you won the lottery, you are rich.

Inverse:Inverse:Inverse:Inverse:

� Inverse of p → q is ¬p → ¬q 
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p q p → q ¬q→¬p q→p ¬p→¬q

T T T T T T

T F F F T T

F T T T F F

F F T T T T

� Compare using Truth table: Conditional, 
Contrapositive, Converse, and Inverse

� pսq(“p if and only if q”, “iff”)

� True if p,q have same truth values, false 
otherwise. Q: How is this related to XOR?

� Can also be defined as (p → q) ∧ (q → p)  

23

p q p ս q

T T T

T F F

F T F

F F T

� Formed from existing propositions using 
logic operators

� Example: p ∧ q ∨ r : Could be interpreted as
(p ∧ q) ∨ r or p ∧ (q ∨ r) 

� precedence order: ¬ ∧ ∨ → ↔
� (Overruled by parentheses)

� We use this order to compute truth values of 
compound propositions.

24
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� A compound proposition that is always TRUE. 
◦ q ∨ ¬q
◦ p ∨ T

� Logical equivalence redefined: p,q are logical 
equivalences if p ↔ q is a tautology. 

p p p p ≡≡≡≡ qqqq
� “⇔” is sometimes used instead of “≡”

� Intuition: p ↔ q is true precisely when p,q
have the same truth values.

� We will learn other ways later
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� Compound propositions can be simplified by 
using simple rules.

� Read page 25 - 28.

� Some are obvious, e.g. Identity, Domination, 
Idempotence, double negation, commutativity, 
associativity

� Less obvious: Distributive, De Morgan’s laws, 
Absorption
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p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)
Intuition (not a proof!) – For the LHS to be true: p 

must be true and q or r must be true. This is the 
same as saying p and q must be true or p and r 
must be true.

p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)
Intuition (less obvious) – For the LHS to be true: p 

must be true or both q and r must be true. This 
is the same as saying p or q must be true and p 
or r must be true.

Proof: use truth tables.
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¬(q ∨ r) ≡ ¬q ∧ ¬r
Intuition – For the LHS to be true: neither q nor r 

can be true. This is the same as saying q and r 
must be false.

¬(q ∧ r) ≡ ¬q ∨ ¬r

Intuition – For the LHS to be true: q ∧ r must be 
false. This is the same as saying q or r must be 
false.

Proof: use truth tables.
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� Q: Is (p ∧ q)→ (p →q)  a tautology?

� Can use truth tables

� Can write a compound proposition and 
simplify
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� Limitations of Propositional Logic
◦ Refer to (Constant) objects

◦ How about “x>0”?

� A more general language: Predicate logic

30
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� A predicate is a proposition that is a 
function of one or more variables.
◦ P(x): x is larger than 0. 
◦ P(1) is true, P(-2) is false,….

� “x”: variable
� P(x): the value of the propositional 

function P at x
� Multiple variables
◦ P(x,y): x + y = 5
◦ P(2,3) is true, P(4,0) is false,….
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� Describes the values of a variable that make 
the predicate true. 

� Determines the truth value of the predicate

� Domain or universe: a property is true for all 
values in a particular domain. 

� Two Popular Quantifiers
◦ Universal

◦ Existential
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� Universal: ∀x P(x) – “P(x) is true for all x in 
the domain”
◦ Also called: “for all… ”, “for every… ”, “for each…”, 

“all of …”,…

◦ ∀x P(x) is true when P(x) is true for every x in the 
domain

◦ ∀x P(x) is false when P(x) is not always true when x 
is in the domain (there exists a value of x that P(x) 
is false: use counterexample)
◦ Domain: real numbers
� (∀x>2)(x2 >4)

� (∀x>0)(x2>1)
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� Existential: ∃x P(x) – “P(x) is true for some x in 
the domain”
◦ Also called “There exists…”, “There is…”, “For 

some…”, “For at least one…”

◦ ∃x P(x) is true when there is an x in the domain 
for which P(x) is true.

◦ ∃x P(x) is false when P(x) is false for every x in 
the domain.
◦ Domain: real numbers
� ∃x (x >1)

� (∃ x>1) (x=x+1)
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� ∀ ∃ have higher precedence than operators 

from Propositional Logic; so ∀x P(x) ∨ Q(x) 

is not logically equivalent to ∀x (P(x) ∨ Q(x))

� Logical Equivalence: P ≡ Q iff they have same 
truth value no matter which domain is used 
and no matter which predicates are assigned 
to predicate variables.
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� ¬ ∀x P(x) ≡ ∃ x ¬P(x)

� ¬ ∃ x P(x) ≡ ∀ x ¬P(x)
◦ “There is no student who can answer this 

question.”

◦ “All Americans eat cheeseburger.”

� Careful: The negation of “All Americans 
eat cheeseburger.” is NOT “No Americans 
eat cheeseburger”!

36
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� Allows simultaneous quantification of 
many variables. 

� E.g. – domain integers, 

∃ x ∃ y ∃ z x2 + y2 = z2

� Domain real numbers:

∀x ∀ y ∃ z (x < z < y) ∨ (y < z < x) 
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� The order of quantifiers

� In the real domain: 
◦ ∀x ∃y (x+y=0): “For every real number x there is a 

real number y such that, x+y=0”

◦ ∃y ∀x (x+y=0): “There is a real number y such that 
for every real number x, x+y=0”
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� Read Ch1.1-1.5
� Practice translating English sentences to 

propositions and predicates
� Practice to use truth tables

� Practice proving logical equivalence by 
manipulating compound propositions

� Understand the difference and relationship 
between propositions, predicates and 
quantifications.

� Recommended Exercises are listed on the 
website
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� Part of the course contents come from Prof. 
Eric Ruppert, Prof. Suprakash Datta, and Jing 
Yang, who have taught this course previously. 
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