Math/CSE 1019C:
Discrete Mathematics for Computer Science Fall 2012

Jessie Zhao
jessie@cse.yorku.ca

Course page: http://www.cse.yorku.ca/course/1019

Class Time and Office Hours

- Class time:
- Monday: 19:00pm - 22:00pm
- Class location: SLH A
- Office hours
- Monday 2:00pm - 4:00pm or by appointment (TEL 3056)
- Contact me by Email
- Use a York account

Start your subject line with "[1019]"
Sign with your full name Send messages in plain text

Evaluation and Grading

- TAs

Arindam Das arindam@cse.yorku.ca
Wendy Ashlock washlock@cse.yorku.ca

- Maria Angel Marquez Andrade cse01009@cse.yorku.ca
- TA office hours? Choose Two from the following
-(1) Mon: 1-2 pm
(2) Tue: 1-2 pm
(3) Tue: $7-8 \mathrm{pm}$
(4) Tue: $8-9 \mathrm{pm}$
(5) Wed: $7-8 \mathrm{pm}$
(6) Wed: $8-9 \mathrm{pm}$
(7) Thu: 8-9 pm
- 7 assignments (15%)
- 3 Tests (45\%)
- Oct. $15^{\text {st }}$, Nov $5^{\text {th }}$, Nov $26^{\text {th }}$ (tentative)
- No deferred tests
- Final Exam (40\%) Dec. ?

Assignments Policy

- Academic Honesty.

Solutions you hand in for homework assignments must be your own work.
Visit the class webpage for more details on academic policy.

- Use the Dropbox to submit your assignments.
- Locates in the 1st floor of LAS (previously known as CSE)
- Assignments submitted late will not be graded. The solutions will be posted when the deadline is reached.
- Missed assignments
- No reason: graded with 0
- With reason: transferred to final exam value

Why study Mathematic?

Course objectives

We will focus on two major goals:

- Basic tools and techniques in discrete mathematics
- Propositional logic
- Set Theory
- Simple algorithms
- Induction, recursion
- Counting techniques

Precise and rigorous mathematical reasoning

- Writing proofs

List of Topics in the Textbook

- Ch 1: Logic and Proofs.
- Ch 2: Sets, functions, sequences, sums.

To do well you should:

- Ch 3: Algorithms.
- Study with pen and paper
- Ask for help immediately
- Ch 5: Induction and recursion.
- Practice, practice, practice..
, Ch 6: Counting Techniques.
- Follow along in class rather than take notes
- Ch 8 Advanced counting techniques.
- Ask questions in class
- Read the book, not just the slides

Propositional Logic

Propositions

- Declarative sentence
- Must be either True or False.
- A formal mathematical "language" for precise reasoning
- Truth values, truth tables

Propositions:

- CNN Tower is in Toronto
, Toronto is the capital of Canada.
- $1+1=2$
- Implications: $\rightarrow \leftrightarrow$
- All of these are based on ideas we use daily to reason about things.

Not propositions:

- There are x students in this class. Neither true or false
- Do you like this course?
- Not declarative

Propositions can be represented by variables:

- P: CNN Tower is in Toronto
- q: Toronto is the capital of Canada.
- $\mathrm{r}: 1+1=2$

Truth value: True or False (T or F)

- p : T
- q: F
, r: T

Negation

- $\neg \mathrm{p}$ ("not p")
- "It is not the case that p "
- p: Today is Monday
- \neg p: Today is not Monday
- Truth tables

p	$\neg \mathrm{p}$
T	F
F	T

Conjunction

- Conjunction: $\mathrm{p} \wedge \mathrm{q}$ ("p and q ")
p : It is blew freezing.
q : It is snowing
ค $\mathrm{p} \wedge \mathrm{q}$: It is blew freezing and snowing.
$p \wedge q$ is true if and only if both p and q are true and false otherwise

p	q	$p \wedge q$
T	T	T
T	F	F
F	T	F
F	F	F

Exclusive OR (XOR)

" $\mathrm{p} \oplus \mathrm{q}$ ("p or q , but not both")
In a steak house, you can either choose a salad or a soup, but not both

- $p \oplus q$ is true if p and q have different truth values and is false otherwise

p	q	$\mathrm{p} \oplus \mathrm{q}$
T	T	F
T	F	T
F	T	T
F	F	F

Conditional

- Conditional $\mathrm{p} \rightarrow \mathrm{q}$ ("if p then q ")
- p: hypothesis, q : conclusion
- If you turn in a homework late, it will not be graded
- $p \rightarrow q$ is false when p is true and q is false, and true otherwise.

p	q	$\mathrm{p} \rightarrow \mathrm{q}$	$\neg \mathrm{p} \vee \mathrm{q}$
T	T	T	T
T	F	F	F
F	T	T	T
F	F	T	T

Logical Equivalence

- $p \rightarrow q$ and $\neg p \vee q$ are logically equivalent.
- $p \rightarrow q \equiv \neg p \vee q$
- Truth tables are the simplest way to prove such facts.
- We will learn other ways later.

Contrapositive

- Contrapositive of $p \rightarrow q$ is $\neg q \rightarrow \neg p$
- Any conditional and its contrapositive are logically equivalent (have the same truth table) - Check by writing down the truth table.
- If you turn in a homework late, it will not be graded.
- If your homework is graded, you do not turn in the home work late.

Converse

- Converse of $p \rightarrow q$ is $q \rightarrow p$
- Not logically equivalent to conditional
- If you won the lottery, you are rich.

Inverse:

- Inverse of $p \rightarrow q$ is $\neg p \rightarrow \neg q$
- Compare using Truth table: Conditional, Contrapositive, Converse, and Inverse

p	q	$\mathrm{p} \rightarrow \mathrm{q}$	$\neg \mathrm{q} \rightarrow \neg \mathrm{p}$	$\mathrm{q} \rightarrow \mathrm{p}$	$\neg \mathrm{p} \rightarrow \neg \mathrm{q}$
T	T	T	T	T	T
T	F	F	F	T	T
F	T	T	T	F	F
F	F	T	T	T	T

Biconditional

Compound Propositions

- p $\leftrightarrow q$ ("p if and only if q", "iff")
- True if p, q have same truth values, false
- Formed from existing propositions using logic operators
- Example: $\mathrm{p} \wedge q \vee r$: Could be interpreted as $(p \wedge q) \vee r$ or $p \wedge(q \vee r)$
, precedence order: $\neg \wedge \vee \rightarrow \leftrightarrow$
- (Overruled by parentheses)
- We use this order to compute truth values of compound propositions.

Tautology

- A compound proposition that is always TRUE.
- q $\vee \neg q$
pvT
- Logical equivalence redefined: p,q are logical equivalences if $p \leftrightarrow q$ is a tautology.

$$
p \equiv q
$$

, " \Leftrightarrow " is sometimes used instead of " \equiv "

- Intuition: $p \leftrightarrow q$ is true precisely when p, q have the same truth values.
- We will learn other ways later

Distributive Laws

$p \wedge(q \vee r) \equiv(p \wedge q) \vee(p \wedge r)$
Intuition (not a proof!) - For the LHS to be true: p must be true and q or r must be true. This is the same as saying p and q must be true or p and r must be true.
$p \vee(q \wedge r) \equiv(p \vee q) \wedge(p \vee r)$
Intuition (less obvious) - For the LHS to be true: p must be true or both q and r must be true. This is the same as saying p or q must be true and p or r must be true.

Proof: use truth tables.

De Morgan's Laws

$\neg(q \vee r) \equiv \neg q \wedge \neg r$
Intuition - For the LHS to be true: neither q nor r can be true. This is the same as saying q and r must be false.
$\neg(q \wedge r) \equiv \neg q \vee \neg r$
Intuition - For the LHS to be true: $q \wedge r$ must be false. This is the same as saying q or r must be false.

Proof: use truth tables.

Using the laws

- Q : Is $(\mathrm{p} \wedge \mathrm{q}) \rightarrow(\mathrm{p} \rightarrow \mathrm{q})$ a tautology?
- Can use truth tables
- Limitations of Propositional Logic

Refer to (Constant) objects
How about " $x>0$ "?

- Can write a compound proposition and simplify

Predicate Logic

- A predicate is a proposition that is a function of one or more variables.
- $\mathrm{P}(\mathrm{x})$: x is larger than 0 .
- $P(1)$ is true, $P(-2)$ is false,....
, "x": variable
- $P(x)$: the value of the propositional function P at x
- Multiple variables
- $P(x, y): x+y=5$
- $P(2,3)$ is true, $P(4,0)$ is false, \ldots.

Quantifiers

- Describes the values of a variable that make the predicate true.
- Determines the truth value of the predicate
- Domain or universe: a property is true for all values in a particular domain.
- Two Popular Quantifiers
- Universal
- Existential

Universal Quantifier

- Universal: $\forall \mathrm{x} P(\mathrm{x})-\mathrm{P}(\mathrm{x})$ is true for all x in

Existential Quantifier

- Existential: $\exists x P(x)-" P(x)$ is true for some x in the domain"
the domain"
Also called: "for all... ", "for every... ", "for each...",
- Also called "There exists...", "There is...", "For some...", "For at least one..."
$\forall x P(x)$ is true when $P(x)$ is true for every x in the $\exists x P(x)$ is true when there is an x in the domain for which $P(x)$ is true.
$\forall x P(x)$ is false when $P(x)$ is not always true when x
- $\exists x P(x)$ is false when $P(x)$ is false for every x in the domain.
is in the domain (there exists a value of x that $P(x)$
Domain: real numbers
Domain: real numbers
- $\exists x(x>1)$
- $(\forall x>2)\left(x^{2}>4\right)$
- $(\forall x>0)\left(x^{2}>1\right)$

Scope of Quantifiers

- $\forall \exists$ have higher precedence than operators from Propositional Logic; so $\forall x P(x) \vee Q(x)$ is not logically equivalent to $\forall x(P(x) \vee Q(x))$
- Logical Equivalence: $\mathrm{P} \equiv \mathrm{Q}$ iff they have same truth value no matter which domain is used and no matter which predicates are assigned to predicate variables.

Negation of Quantifiers

- $\neg \forall \mathrm{x} P(\mathrm{x}) \equiv \exists \mathrm{x} \neg \mathrm{P}(\mathrm{x})$
- $\neg \exists \mathrm{x} \mathrm{P}(\mathrm{x}) \equiv \forall \mathrm{x} \neg \mathrm{P}(\mathrm{x})$
- "There is no student who can answer this question."
"All Americans eat cheeseburger."
- Careful: The negation of "All Americans eat cheeseburger." is NOT "No Americans eat cheeseburger"!

Nested Quantifiers

- Allows simultaneous quantification of many variables.
, E.g. - domain integers,

$$
\exists x \exists y \exists z x^{2}+y^{2}=z^{2}
$$

- Domain real numbers:

$$
\forall x \forall y \exists z(x<z<y) \vee(y<z<x)
$$

Nested Quantifiers

- The order of quantifiers
- In the real domain:
- $\forall x \exists y(x+y=0)$: "For every real number x there is a real number y such that, $x+y=0$ "
- $\exists y \forall x(x+y=0)$: "There is a real number y such that for every real number $x, x+y=0$ "

Readings and notes

- Read Ch1.1-1.5
- Practice translating English sentences to
- Part of the course contents come from Prof. propositions and predicates

Eric Ruppert, Prof. Suprakash Datta, and Jing

- Practice to use truth tables
- Practice proving logical equivalence by manipulating compound propositions
- Understand the difference and relationship between propositions, predicates and quantifications.
- Recommended Exercises are listed on the website

