

List of Topics in the Textbook

- > Ch 1: Logic and Proofs.
- Ch 2: Sets, functions, sequences, sums.
- > Ch 3: Algorithms.
- > Ch 5: Induction and recursion.
- Ch 6: Counting Techniques.
- > Ch 8 Advanced counting techniques.

To do well you should:

- > Study with pen and paper
- Ask for help immediately
- Practice, practice, practice...
- Follow along in class rather than take notes
- Ask questions in class
- Read the book, not just the slides

Propositional Logic

- A formal mathematical "language" for precise reasoning
 - Truth values, truth tables
 - Boolean logic: v 🔨 🦳
 - Implications: $\rightarrow \leftrightarrow$
- > All of these are based on ideas we use daily to reason about things.

Propositions

- Declarative sentence
- Must be either True or False.

Propositions:

- CNN Tower is in Toronto
- > Toronto is the capital of Canada.
- $\rightarrow 1+1=2$

Not propositions:

- There are x students in this class.
 Neither true or false
- Do you like this course?
- Not declarative

Conjunction

- \blacktriangleright Conjunction: p \land q ("p and q")
 - p: It is blew freezing.
 - q: It is snowing
- $\circ \ p \land q$: It is blew freezing and snowing.
- \blacktriangleright p \land q is true if and only if both p and q are true and false otherwise

that and faise otherwise				
	р	q	$p \lor d$	1
	Т	Т	Т	
	Т	F	F	
	F	Т	F	
	F	F	F	

Disjunction

- ▶ p ∨ q ("p or q")
- p: A student taking 1019 is from CSE Department
 q: A student taking 1019 is form Math Department
- q. A student taking 1019 is form Math De • $p \vee q$: A student taking 1019 is from CSE
- Department or Math Department.
- \blacktriangleright p \lor q is false when both p and q are false and is true otherwise

р	q	$p \lor q$
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

Exclusive OR (XOR) ▶ $p \oplus q$ ("p or q, but not both") In a steak house, you can either choose a salad or a soup, but not both $\mathbf{p} \oplus \mathbf{q}$ is true if \mathbf{p} and \mathbf{q} have different truth values and is false otherwise p⊕q р q Т Т F Т F Т Т F Т F F F

Conditional

- \blacktriangleright Conditional $\ p \rightarrow q$ ("if p then q")
- p: hypothesis, q: conclusion
 If you turn in a homework late, it will not be
- graded $p \rightarrow q$ is false when p is true and q is
 - false, and true otherwise.

р	q	$\boldsymbol{p} \to \boldsymbol{q}$	$\neg \ p \lor q$
Т	Т	Т	Т
Т	F	F	F
F	Т	Т	Т
F	F	Т	Т

Logical Equivalence

- $p \rightarrow q$ and $\neg p \lor q$ are logically equivalent.
- $p \rightarrow q \equiv \neg p \lor q$
- Truth tables are the simplest way to prove such facts.
- We will learn other ways later.

Contrapositive

- \blacktriangleright Contrapositive of $p \rightarrow q$ is $\neg q \rightarrow \neg p$
- Any conditional and its contrapositive are logically equivalent (have the same truth table) – Check by writing down the truth table.
 - If you turn in a homework late, it will not be graded.
- If your homework is graded, you do not turn in the home work late.

Converse

- \blacktriangleright Converse of $p \rightarrow q$ is $q \rightarrow p$
- Not logically equivalent to conditional
 If you won the lottery, you are rich.
- Inverse:
- \blacktriangleright Inverse of $p \rightarrow q$ is $\neg p \rightarrow \neg q$

 Compare using Truth table: Conditional, Contrapositive, Converse, and Inverse

	р	q	$p\toq$	⊸q→¬p	q→p	−p→−q
ĺ	Т	Т	Т	Т	Т	Т
	Т	F	F	F	Т	Т
	F	Т	Т	Т	F	F
	F	F	Т	Т	Т	Т

Biconditional p ↔ q("p if and only if q", "iff") True if p,q have same truth values, false otherwise. Q: How is this related to XOR? Can also be defined as (p → q) ∧ (q → p)

Scope of Quantifiers

- → $\forall \exists$ have higher precedence than operators from Propositional Logic; so $\forall x P(x) \lor Q(x)$ is not logically equivalent to $\forall x (P(x) \lor Q(x))$
- Logical Equivalence: P = Q iff they have same truth value no matter which domain is used and no matter which predicates are assigned to predicate variables.

Nested Quantifiers

- Allows simultaneous quantification of many variables.
- E.g. domain integers, $\exists x \exists y \exists z x^2 + y^2 = z^2$
- > Domain real numbers: $\forall x \forall y \exists z (x < z < y) \lor (y < z < x)$

Nested Quantifiers

- > The order of quantifiers
- In the real domain:
- $\forall x \exists y (x+y=0)$: "For every real number x there is a real number y such that, x+y=0"
- \circ ∃y $\forall x~(x+y=0):$ "There is a real number y such that for every real number x,~x+y=0"

Readings and notes

- Read Ch1.1-1.5
- Practice translating English sentences to propositions and predicates
- Practice to use truth tables
- Practice proving logical equivalence by manipulating compound propositions
- Understand the difference and relationship between propositions, predicates and quantifications.
- Recommended Exercises are listed on the website

