Math/CSE 1019C:
Discrete Mathematics for Computer Science Fall 2012

Jessie Zhao
jessie@cse.yorku.ca

Course page: http://www.cse.yorku.ca/course/1019

- Recall: $\mathrm{P}(\mathrm{n}, \mathrm{r})$ vs $\mathrm{C}(\mathrm{n}, \mathrm{r})$

- $\mathrm{C}(\mathrm{n}, \mathrm{r})$ is also called binomial coefficient.
- How many bit strings of length 10 contain
exactly four 1 s ?
$C(10,4)=210$
at most three 1 s ?
$C(10,0)+C(10,1)+C(10,2)+C(10,3)=176$
at least 41 s ?
$2^{10}-176=848$
- an equal number of 0 s and 1 s ?
$C(10,5)=252$

Binomial Coefficients

$$
(x+y)^{n}=\sum_{j=0}^{n} C(n, j) x^{n-j} y^{j} \quad \text { for } n \geq 0
$$

- Examples:
- What is the expansion of $(x+y)^{4}$?

$$
x^{4}+4 x^{3} y+6 x^{2} y^{2}+4 x y^{3}+y^{4}
$$

- What is the coefficient of $x^{12} y^{13}$ in the expansion of $(2 x-3 y){ }^{25}$?

$$
-\left(25!* 2^{12} * 3^{13}\right) /(13!12!)
$$

- No more TA office hours
- My office hours will be the same - Monday 2-4pm
- Solutions for Test 3 is available online.
- Check your previous test and assignment marks on line
By the last four digits of your student ID
Available till Dec $10^{\text {th }}$.
- Assignment 7 will be available to pick up during my office hours
- Final Exam:
- Coverage: include all materials

Closed book exam

Binomial Coefficients

$$
(x+y)^{n}=\sum_{j=0}^{n} C(n, j) x^{n-j} y^{j} \quad \text { for } n \geq 0
$$

- $C(n, r)$ occurs as coefficients in the expansion of $(a+b)^{n}$
, Combinatorial proof: refer to textbook

Corollary

$$
\sum_{i=0}^{n} C(n, j)=2^{n} \text { for } n \geq 0
$$

- Proof: Use the Binomial Theorem with $x=y=1$

Pascal's Identity

$C(n+1, k)=C(n, k-1)+C(n, k) \quad$ for $1 \leq k \leq n$

Total number of subsets $=$ number including $\bullet+$ number not including \bullet
$\mathrm{C}(\mathrm{n}+1, \mathrm{k}) \quad=\quad \mathrm{C}(\mathrm{n}, \mathrm{k}-1) \quad+\quad \mathrm{C}(\mathrm{n}, \mathrm{k})$

Pascal's triangle

Recurrence Relations

- An easy counting problem: How many bit strings of length n have exactly three zeros?
- A recurrence relation (sometimes called a difference equation) is an equation which defines the nth term in the sequence in terms of (one ore more) previous terms
A more difficult counting problem: How many bit strings of length n contain three consecutive zeros?
- A sequence is called a solution of a recurrence relation if its terms satisfy the recurrence relation
, Recursive definition vs. recurrence relation?

Modeling with Recurrence
 Relations

- Examples:

Example 1 - Easy

- Suppose the interest is compounded at 11% annually. If we deposit $\$ 10,000$ and do not withdraw the interest, find the total amount invested after 30 years.
- Normally there are infinitely many sequences which satisfy the equation. These solutions are distinguished by the initial conditions.

[^0]
Example 2 (harder)

- Find a recurrence relation for the number of bit strings of length n that do not have two consecutive 0s.
- a_{n} : \# strings of length n that do not have two consecutive 0s.
- Case 1: \# strings of length n ending with $1--a_{n-1}$
- Case 2: \# strings of length n ending with $10--a_{n-2}$
- This yields the recurrence relation $a_{n}=a_{n-1}+a_{n-2}$ for $\mathrm{n} \geq 3$
- Initial conditions: $a_{1}=2, a_{2}=3$

Example 3 (much harder)

- Find a recurrence relation for the number of bit strings of length n which contain 3 consecutive 0s.
- Let S be the set of strings with 3 consecutive 0 s . First define the set inductively.
- Basis: 000 is in S
- Induction (1): if $w \in S, u \in\{0,1\}^{*}, v \in\{0,1\}^{*}$ then - uwv \in S

Adequate to define S but NOT for counting. DO NOT count the same string twice.

Solving Linear Recurrence Relations

- Solve recurrence relations: find a nonrecursive formula for $\left\{a_{n}\right\}$
- Easy: for $\mathrm{a}_{\mathrm{n}}=2 \mathrm{a}_{\mathrm{n}-1}, \mathrm{a}_{0}=1$, the solution is $a_{n}=2^{n}$ (back substitute)
- Difficult: for $\mathrm{a}_{\mathrm{n}}=\mathrm{a}_{\mathrm{n}-1}+\mathrm{a}_{\mathrm{n}-2}, \mathrm{a}_{0}=0, \mathrm{a}_{1}=1$, how to find a solution?
- Linear Homogeneous Recurrence Relations of degree k with constant coefficients
- Solving a recurrence relation can be very difficult unless the recurrence equation has a special form

$$
\begin{aligned}
& \mathrm{a}_{\mathrm{n}}=\mathrm{c}_{1} \mathrm{a}_{\mathrm{n}-1}+\mathrm{c}_{2} \mathrm{a}_{\mathrm{n}-2}+\ldots+\mathrm{c}_{\mathrm{k}} \mathrm{a}_{\mathrm{n}-\mathrm{k}}, \\
& \text { where } \mathrm{c}_{1,} \mathrm{c}_{2 \ldots} \ldots \mathrm{c}_{\mathrm{k}} \in \mathrm{R} \text { and } \mathrm{c}_{\mathrm{k}} \neq 0
\end{aligned}
$$

Single variable: n

Linear: no $a_{i} a_{j}, a_{i}{ }^{2}, a_{i}{ }^{3} \ldots$

- Constant coefficients: $c_{i} \in R$
- Homogeneous: all terms are multiples of the $a_{i} s$

Degree k: $\mathrm{c}_{\mathrm{k}} \neq 0$

Solution Procedure

$a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\ldots+c_{k} a_{n-k} \quad$ where $c_{1}, c_{2 \ldots} c_{k} \in R$ and $c_{k} \neq 0$

- 1. Put all a_{i} 's on LHS of the equation:

$$
a_{n}-c_{1} a_{n-1}-c_{2} a_{n-2}-\ldots-c_{k} a_{n-k}=0
$$

, 2. Assume solutions of the form $a_{n}=r^{n}$, where r is a constant
, 3. Substitute the solution into the equation:
$r^{n}-c_{1} r^{n-1}-c_{2} r^{n-2} \ldots-c_{k} r^{n-k}=0$. Factor out the lowest power of r : $r^{k}-c_{1} r^{k-1}-c_{2} r^{k-2}-\ldots-c_{k}=0$ (called the characteristic equation)
, 4. Find the k solutions $r_{1}, r_{2}, \ldots, r_{k}$ of the characteristic equation (characteristic roots of the recurrence relation)

- 5 . If the roots are distinct, the general solution is
$a_{n}=\alpha_{1} r_{1}{ }^{n}+\alpha_{2} r_{2}{ }^{n}+\ldots+\alpha_{k} r_{k}{ }^{n}$
, 6. The coefficients $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$ are found by enforcing the initial conditions
- Example: Solve $\mathrm{a}_{\mathrm{n}}=3 \mathrm{a}_{\mathrm{n}-2}, \mathrm{a}_{0}=\mathrm{a}_{1}=1$
$a_{n}-3 a_{n-2}=0$
$r^{n}-3 r^{n-2}=0=0$, i.e. $r^{2}-3=0$
- Find the root of the characteristic equation $r_{1}=\sqrt{ } 3$, r
${ }_{2}=-\sqrt{ } 3$
- Compute the general solution

$$
a_{n}=\alpha_{1}(\sqrt{ } 3)^{n}+\alpha_{2}(-\sqrt{ } 3)^{n}
$$

- Find α_{1} and α_{2} based on the initial conditions:

$$
\begin{aligned}
& a_{0}=\alpha_{1}(\sqrt{ } 3)^{0}+\alpha_{2}(-\sqrt{ } 3)^{0}=\alpha_{1}+\alpha_{2}=1 \\
& a_{1}=\alpha_{1}(\sqrt{ } 3)^{1}+\alpha_{2}(-\sqrt{ } 3)^{1}=\sqrt{ } 3 \alpha_{1}-\sqrt{ } 3 \alpha_{2}=1
\end{aligned}
$$

- Solution: $\mathrm{a}_{\mathrm{n}}=(1 / 2+1 / 2 \sqrt{ } 3)(\sqrt{ } 3)^{n}+(1 / 2-1 / 2 \sqrt{ } 3)(-\sqrt{ } 3)^{n}$
- Example: Find an explicit formula for the Fibonacci numbers
- $f_{n}-f_{n-1}-f_{n-2}=0$
- $r^{n}-r^{n-1}-r^{n-2}=0$, i.e. $r^{2}-r-1=0$
- Find the root of the characteristic equation $r_{1}=(1+\sqrt{ } 5) / 2, r_{2}=(1-\sqrt{ } 5) / 2$
- Compute the general solution $f_{n}=\alpha_{1}\left(r_{1}\right)^{n}+\alpha_{2}\left(r_{2}\right)^{n}$
- Find α_{1} and α_{2} based on the initial conditions:
$\alpha_{1}=1 / \sqrt{ } 5$
$\alpha_{2}=-1 / \sqrt{ } 5$
Solution: $\mathrm{f}_{\mathrm{n}}=1 / \sqrt{ } 5 \cdot((1+\sqrt{ } 5) / 2)^{\mathrm{n}}-1 / \sqrt{ } 5 \cdot((1-\sqrt{ } 5) / 2)^{\mathrm{n}}$

[^0]: - Recurrence relation: $P_{n}=P_{n-1}+0.11 P_{n-1}$
 - Initial condition: $a_{0}=10,000$
 - Answer: $P_{30}=10000 \times(1.11)^{30}$

