

Recurrence Relations

- An easy counting problem: How many bit strings of length n have exactly three zeros?
- A more difficult counting problem: How many bit strings of length n contain three consecutive zeros?

- A sequence is called a <u>solution</u> of a recurrence relation if its terms satisfy the recurrence relation
- Recursive definition vs. recurrence relation?

Modeling with Recurrence Relations

- Examples:
 - Fibonacci sequence: a_n = a_{n-1} + a_{n-2}
 Pascal's identity: C(n+1,k)=C(n,k)+C(n,k-1)
- Normally there are infinitely many sequences which satisfy the equation. These solutions are distinguished by the initial conditions.

Example 3 (much harder)

- Find a recurrence relation for the number of bit strings of length n which contain 3 consecutive 0s.
- Let S be the set of strings with 3 consecutive 0s.
 First define <u>the set</u> inductively.
 Induction (2): if w∈S, u∈{0,1}*, then
- 1w∈S, 01w∈S, 001w∈S, 000u∈S
- This yields the recurrence
- $a_n = a_{n-1} + a_{n-2} + a_{n-3} + 2^{n-3}$
- Initial conditions: $a_3 = 1, a_4 = 3, a_5 = 8$

Solving Linear Recurrence Relations

- Solve recurrence relations: find a nonrecursive formula for {a_n}
- Easy: for $a_n = 2a_{n-1}$, $a_0 = 1$, the solution is $a_n = 2^n$ (back substitute)
- Difficult: for a n = a n-1 + a n-2, a = 0, a = 1, how to find a solution?

- Homogeneous: all terms are multiples of the ais
- Degree k: c_k ≠0

+ Example: Solve $a_{n+2} = 3a_{n+1}$, $a_0 = 4$

- $a_{n+2}-3a_{n+1}=0$ $r^{n+2}-3r^{n-1}=0$, i.e. r-3=0
- \circ Find the root of the characteristic equation $r_1 = 3$
- Compute the general solution $a_n = \alpha_1 r_1^n = \alpha_1 3^n$
- Find α_1 based on the initial conditions: $a_0 = \alpha_1(3^0)$. Then $\alpha_1 = 4$.
- Produce the solution: $a_n = 4(3^n)$

