Discrete Mathematics for Computer Science http://www.cse.yorku.ca/course/1019

- Ex: Suppose there are 50 students in the class,
- In how many ways can the whole class stand in a line?

$$
50!
$$

- In how many ways can we select three students to stand in a line?

$$
50 * 49 * 48
$$

- Ex: Suppose there are 50 students in the
class,
- In how many ways can the whole class stand in a
line?
- In how many ways can we select three students to
stand in a line? $50 * 49 * 48$

Math/CSE 1019C: Fall 2012

Jessie Zhao
jessie@cse.yorku.ca

Course page:

Permutation

- For any integer $n>0$, the number of permutations of a set with n elements is n ! - A permutation of a set of elements is an ordering of the elements.
- E.g. the set of elements $\{a, b, c\}$ can be ordered in the following ways:
- abc acb cba bac bca cab

By the product rule, there are $n(n-1)(n-2) . .1=n$! permutations

\mathbf{r}-permutation

- An r-permutation is an ordering of r elements of a set of n elements, denoted by $P(n, r)$
- E.g. the 2-permutations of the set of elements $\{\mathrm{a}, \mathrm{b}$, c\} are:
- ab ac ba bc ca cb
- By the product rule, there are $n(n-1)(n-2) \ldots .(n-r+1)$ r-permutations

- Recall: How many one-to-one functions are there from a set with m elements to one with n elements?
- $n(n-1) \ldots(n-m+1)$ when $m \leq n$
- 0 when $\mathrm{m}>\mathrm{n}$

0

For the solitaire hand that show initially

- How many possible hands?

$$
p(52,7)
$$

- How many possible hands with no Aces? $p(48,7)$
- How many possible hands with one or more Aces? $P(52,7)-P(48,7)$

Combinations \& Permutations

- There are r ! permutation of each subset
- There are more r-permutation than r combinations.

Combinations

- An r-combination is an unordered selection of r elements of a set of n elements, denoted by C(n,r)
- E.g. the 2-combinations of the set of elements $\{a, b, c\}$ are:
- $\{a, b\}\{a, c\}\{b, c\}$

Combinations

$C(n, r)=\frac{P(n, r)}{P(r, r)}=\frac{n!}{(n-r)!r!}=\frac{n(n-1) \ldots(n-r+1)}{r!}$
for $0 \leq \mathrm{r} \leq \mathrm{n}$

Corollary: $\mathrm{C}(\mathrm{n}, \mathrm{r})=\mathrm{C}(\mathrm{n}, \mathrm{n}-\mathrm{r})$

- For a deck of 52 cards,
- How many poker hands of five cards can there be?

$$
C(52,5)=2,598,960
$$

- How many ways are there to select 47 cards? $C(52,47)=C(52,5)=2,598,960$

