Math/CSE 1019C:
Discrete Mathematics for Computer Science Fall 2012

Jessie Zhao
jessie@cse.yorku.ca

Course page: http://www.cse.yorku.ca/course/1019

Recursive Definitions

- Recursive definition: define an object by itself
- Geometric progression $a_{n}=\operatorname{ar}^{n}$ for $n=0,1,2, \ldots$ - A recursive definition: $a_{0}=a, a_{n}=r a_{n-1}$ for $n=1,2, \ldots$
- Arithmetic progression $a_{n}=a+d n$ for $\mathrm{n}=0,1,2$..
- A recursive definition: $a_{0}=a, a_{n}=a_{n-1}+d$ for $n=1,2, \ldots$
, Test 3
Nov 26th $, 7 \mathrm{pm}-8: 20 \mathrm{pm}$
Ch 2.6, 3.1-3.3, 5.1, 5.2, 5.5
6 questions
- Locations
- SLH F (Last name A-L)
- SLH A (Last name from M-Z)

Recursive Definition

- 1. Basis step
- For functions: specify the value of the function at zero
For sets: specify members of the initial set
- 2.Inductive or recursive step
- For functions: Show how to compute its value at an integer from its values at smaller integers.
For sets: Show how to build new things from old things with some construction rules

Practice

- Suppose $f(0)=3$, and $f(n+1)=2 f(n)+2, \forall n \geq 0$.

Fibonacci Sequence

- Recursive definition:

Find $f(1), f(2)$ and $f(3)$.

- 1. Basis:
- $f(0)=0, f(1)=1$ (two initial conditions)
- Give a recursive definition for $f(n)=n$!
- 2.Induction:
- $f(n)=f(n-1)+f(n-2)$ for $n=2,3,4 \ldots$ (recurrence equation)
- Practice: find the Fibonacci numbers
f2,f3,f4,f5, and f6

Recursive Definition \& Mathematical Induction

- Proof of assertions about recursively defined objects usually involves a proof by induction.
- Prove the assertion is true for the basis step
$f_{n}>\alpha^{n-2}$ when $n \geq 3$, where $\alpha=(1+\sqrt{5}) / 2$
- Proof by strong induction: $P(n)$ is $f_{n}>\alpha^{n-2}$
- Basis step:

Prove if the assertion is true for the previous objects it must be true for the new objects you can

- $n=3, \alpha<2=f_{3}$, so $P(3)$ is true. build from the previous objects
Conclude the assertion must be true for all objects
- $n=4, \alpha^{2}=((1+\sqrt{ } 5) / 2)^{2}=(3+\sqrt{ } 5) / 2<3=f_{4}$, so $P(4)$ is true.

Inductive Step:

- Assume $P(j)$ is true, i.e. $f_{j}>\alpha^{j-2}$ for $3 \leq j \leq k$, where $k \geq 4$
- Prove $P(k+1)$ is true, i.e. $f_{k+1}>\alpha^{k-1}$
- $f_{k+1}=f_{k}+f_{k-1} \leq \alpha^{k-2}+\alpha^{k-3}=(\alpha+1) \alpha^{k-3}=\alpha^{2} \alpha^{k-3}=\alpha^{k-1}$
$\alpha+1=\alpha^{2}$

Practice

- Give a recursive definition for the following sets:

。 \mathbf{Z}^{+}

- The set of odd positive numbers
- The set of positive numbers not divisible by 3

Strings

- A string over an alphabet Σ is a finite sequence of symbols from Σ
- The set of all strings (including the empty string λ) is called Σ^{*}
- Recursive definition of Σ^{*} :
- 1. Basis step: $\lambda \in \Sigma^{*}$
- 2.Recursive step: If $w \in \Sigma^{*}$ and $x \in \Sigma$, the $w x \in \Sigma^{*}$
- Example: If $\Sigma=\{0,1\}$, then $\Sigma^{*}=\{\lambda, 0,1,00,01,10,11, \ldots\}$ is the set of bit strings

- Example: Give a recursive definition of the set S of bit strings with no more than a single 1 .
- 1. Basis step: $\lambda, 0$, and 1 are in S
- 2.Recursive step: if w is in S, then so are $0 w$ and $w 0$.

Length of a String

- Recursive definition of the length of a string I(w)
- 1. Basis step: $I(\lambda)=0$
- 2.Inductive step: $I(w x)=I(w)+1$ if $w \in \Sigma^{*}$ and $x \in \Sigma$

Recursive Algorithms

Input: n: nonnegative integer
Output: The nth Fibonacci number $f(n)$

- Fib_recursive(n)
- If $\mathrm{n}=0$ then return 0
- Else if $n=1$ then return 1

Else return Fib_recursive(n-1)+Fib_recursive(n-2)

Recursion and Iteration

- Iteration: Start with the bases, and apply the recursive definition.
- Fib_iterative(n)
- If $\mathrm{n}=0$ then return 0
- Else $x \leftarrow 0, y \leftarrow 1$
- For $\mathrm{i} \leftarrow 1$ to $\mathrm{n}-1$
- $z-x+y$
- $x-y$
- $y \rightarrow z$
- return y

Recursion and Iteration

- Time complexity
- Fib_recursive(n): exponential
- Fib_iterative(n): linear

Drawback of recursion

- Repeated computation of the same terms

Recursive Algorithms

- Merge_sort(A,lo,hi)
- Input: A[1..n]: array of distinct numbers, $1 \leq l o<h i \leq n$

Output: A[1..n]: A[lo..hi] is sorted
If lo=hi
return;
else
Mid $=\lfloor(h i+l o) / 2\rfloor$
Merge_sort(A,lo,mid)
Merge_sort(A,mid+1,hi)
$A[l o$, hi $]-\operatorname{merge}(A[l o, m i d], A[m i d+1$, hi $])$

Correctness proof

- Inductively assume the two recursive calls correct
- Prove the correctness of the merge step
- By strong induction the algorithm is correct

The Basics of Counting

- Why count?
arrange objects
- Counting Principles
- Let A and B be disjoint sets
- Sum Rule

$$
|\mathrm{AUB}|=|\mathrm{A}|+|\mathrm{B}|
$$

- Product Rule

$$
|\mathrm{A} \times \mathrm{B}|=|\mathrm{A}| \cdot|\mathrm{B}|
$$

- Example: Suppose there are 30 men and 20 women in a class.
- How many ways are there to pick one representative from the class?

50

- How many ways are there to pick two representatives, so that one is man and one is woman?

600

- Example: Suppose you are either going to an Italian restaurant that serves 15 entrees or to a French restaurant that serves 10 entrees
- How many choices of entree do you have? 25
- Example: Suppose you go to the French restaurant and find out that the prix fixe menu is three courses, with a choice of 4 appetizers, 10 entrees and 5 desserts
- How many different meals can you have? 200

How many different bit strings of length 8 are there?

$$
2^{8}
$$

- How many different bit strings of length 8 both begin and end with a 1 ?
2^{6}
- How many bit strings are there of length 8 or less?
$2^{8}+2^{7}+\ldots+2^{0}$ (counting empty string)
- How many bit strings with length not exceeding n , where n is a positive integer, consist no 0 .
$\mathrm{n}+1$ (counting empty string)
- How many functions are there from a set with m elements to a set with n elements?

$$
\mathrm{n}^{\mathrm{m}}
$$

- How many one-to-one functions are there from a set with m elements to one with n elements?
$n(n-1) \ldots(n-m+1)$ when $m \leq n$
0 when $m>n$

Principle of Inclusion-Exclusion

- IF A and B are not disjoint sets

$$
|A U B|=|A|+|B|-|A \cap B|
$$

- Don't count objects in the intersection of two sets more than once.
- What is |AUBUC|?
, How many positive integers less than 1000
are divisible by 7 ? $\lfloor 999 / 7\rfloor=142$
- are divisible by both 7 and 11 ?【999/77 」 = 12
are divisible by 7 but not by 11 ? $142-12=130$
are divisible by either 7 or 11 ? $142+\lfloor 999 / 11\rfloor-12=220$
are divisible by exactly one of 7 and 11? $142+\lfloor 999 / 11\rfloor-12-12=208$
are divisible by neither 7 nor 11 ?

$$
999-220=779
$$

