
2009 November 23

Patterns
Example Test Questions

1.
The Composite design pattern is used to compose classes into tree structures in order to represent
containment relationships. The pattern lets you treat objects and compositions of objects in the same way.

Use the Composite pattern, together with BON, to model the notion of a folder in Windows XP.
Folders may be nested, and may also contain text files and binary files. Files may be opened, closed, and
drawn on the screen. Folders may also have items added to and removed from them. Draw a static BON
diagram modeling this notion. Show the interface of each class.

2.
In a few sentences, explain the intent and motivation of the Builder pattern. Give an example of its use,
drawn using BON. Do not show the general structure of the pattern; show how it might be used in a real
software system.

3.
The Observer design pattern is used to define a many-to-one dependency among objects. When one object
(called a subject) changes its state, all of its dependents are notified and are updated automatically. Use the
observer pattern in BON to model a network file system, which consists of a remote server and a number of
client personal computers. Using BON, represent the remote server and the clients as classes and draw
their interactions, so that the server and the clients satisfy the observer pattern (i.e.. clients are notified of
changes to the server). You may use BON static and dynamic models, as well as simple contracts, to make
your design clear.

4.
In this question you are expected to use your knowledge on design patterns to suggest a solution for a
given scenario. For each of the following scenarios, state which design pattern(s), of the ones
described in the course, can best solve the problem. Describe how you would use the patterns (which
pattern participants are responsible for doing what) to solve the problem. Briefly identify and discuss
related issues. Only high-level descriptions are required. You do not need to provide pattern details.

A A set of cities is maintained as an interconnected graph structure. A web based application needs
to maintain multiple views of the distances between cities. Assume that the GRAPH class
provides operations for obtaining the distance between any two cities. New roads are always
constructed between cities and as a result the distances change. One view provides a table of
distances between cities in kilometers, and another view maintains the same information in miles.

B In the problem of Part A, an application needs to collect various kinds of information about the

cities such as the least and most crowded cities, the city with the largest mall, etc. Assume each

2009 November 23 Pattern Example Test Questions Page 2 of 6

object representing a city is equipped with necessary operations to obtain the population, size of
the largest mall, etc.

C The Canadian Government needs to set certain attributes for the Canadian provinces based on

characteristics of each province and federal policies. For instance, health care and education
budgets allocated to the provinces use formulas that take into account regional differences. There
are many other operations whose components depend on provincial data. New operations are
introduced every year and some operations may be removed.

D A pizza factory produces pizzas with various toppings. There are 20 different toppings and a

customer may order any combination of toppings. Assume that each of pizza bread and each
topping will be represented by a different class.

5.

A. Using Bon, give a generic static diagram of the <Name> pattern and include relevant interface
features.

B. Give a scenario and object communication diagram (dynamic model) for the <Name> pattern.

6.
 Consider the class PERSON below. Only features relevant to this question are shown.

class PERSON
feature
 house: HOUSE ; car: CAR ; stereo: STEREO

 describe is
 do house.describe ; car.describe ; stereo.describe end

 sell is
 do house.sell ; car.sell ; stereo.sell end
end

Our customer indicates that it is unlikely that we will need to keep track of things other than a
PERSON’s HOUSE, CAR, or STEREO in the future. However, we might need to add more operations
similar to describe and sell. Indicate what design pattern might be useful in this situation, and why.
Draw a BON diagram with expanded classes showing the features and their signatures but not the
contracts. Describe, either in English or Eiffel, what the implementation of each new feature will look
like.

7.

A Briefly, explain the purpose of the Decorator pattern. Describe the pattern in BON.
B Briefly, explain the purpose of the Composite pattern. Describe the pattern in BON.
C It has been suggested that the Decorator design pattern is a degenerate instance of the Composite

Design pattern. Explain what this means.

8.
Describe two key advantages of applying design patterns. Describe one typical disadvantage of applying
design patterns.

2009 November 23 Pattern Example Test Questions Page 3 of 6

9.
Answer the following questions with respect to the following Adapter pattern diagram.

A What is the responsibility of the ADAPTER class?
B What is the responsibility of ADAPTEE class?
C The relationship between ADAPTER and ADAPTEE can be either client-supplier or inheritance.

Briefly explain the implications of using one against the other.

10.
The Eiffel program text, given on the last 2 pages, implements the Composite Design Pattern for a
psuedo biological classification system. Base your answers for the following questions on that
program text.
A Provide a BON static diagram for the given classes. Make sure to indicate if a feature is deferred

or effective. Label all association and aggregation links.
B Complete the display feature and invariant clause for the COMPOSITE_GROUP class in the

space provided below:

class COMPOSITE_GROUP

 -- rest of the code deleted

feature
 display is
 -- display all sub-groups
end -- class COMPOSITE_GROUP

C In the ROOT_CLASS below complete the body of make in the space provided below.

class ROOT_CLASS
creation make
feature
 make is
 -- Create a family with one species composed of a mammal and two fish and then
 -- display the family

 local
 family: FAMILY
 species: SPECIES
 group: GROUP
 do

 end
end -- class ROOT_CLASS

2009 November 23 Pattern Example Test Questions Page 4 of 6

Question ?? – Reference page, you may tear off this page

Indexing

 description: "Components having children and
 an optional parent"

class
 COMPOSITE [T]

feature

 parent: COMPOSITE [T] is
 do
 end

 has (child: T): BOOLEAN is
 -- does 'child' belong to the composite?

 add (new_child: T) is
 -- add `new_child' to the composite

 remove (child: T) is
 -- remove child from the composite

feature {NONE}

 children: LINKED_LIST [T]

invariant

 children_not_void: children /= void

end -- class COMPOSITE

-- features of class COMPOSITE defined here

remove (child: T) is
 -- remove child from the composite
 require
 child_not_void: child /= void
 do
 from children.start
 until
 children.after or child = children.item
 loop
 children.forth
 end
 if not children.after then
 children.remove
 end

 ensure
 removed: not has (child)
 end

has (child: T): BOOLEAN is
 -- does 'child' belong to the composite?
 require
 child_not_void: child /= void
 do
 Result := children.has (child)
 end

add (new_child: T) is
 -- add `new_child' to the composite
 require
 new_child_not_void: new_child /= void
 do
 children.put_front (new_child)
 ensure
 added: has (new_child)
 end

2009 November 23 Pattern Example Test Questions Page 5 of 6

Question ?? – Reference page, you may tear off this page

Indexing description: "A group"

deferred class GROUP

feature

 name: STRING -- Name of this group

 display is
 -- display the group
 deferred
 end

 make (s: STRING) is
 require
 s_not_void: s /= void
 do
 name := s
 end

end -- class GROUP

Indexing
 description: "Composite group"
class
 COMPOSITE_GROUP
inherit
 COMPOSITE [GROUP]
 GROUP
 redefine make end

feature {NONE}
 make (s: STRING) is
 -- Create and initialize the children
 -- as a LINKED_LIST
 do
 Precursor (s)
 create children.make
 end

 feature

 display is
 -- display all sub-groups – to be completed

 ???
 invariant Parent_child_link: ???

end -- class COMPOSITE_GROUP

Indexing description: "A mammal"

class MAMMAL
 inherit GROUP

creation make

feature
 display is
 -- Display a mammal
 do print("mammal") end

end -- class MAMMAL

Indexing description: "A species with groups"

class SPECIES
 inherit COMPOSITE_GROUP

creation make

end -- class SPECIES

Indexing description: "A fish"

class FISH
 inherit GROUP

creation make

feature
 display is
 -- Display a fish
 do print("fish") end

end -- class FISH

Indexing description: "A family of species"

class FAMILY
 inherit COMPOSITE_GROUP

creation make

end -- class FAMILY

2009 November 23 Pattern Example Test Questions Page 6 of 6

11.
A In a few sentences, explain the <Name> pattern.
B Describe when the <Name>pattern would applicable?
C Give an example of the use of the <Name>pattern, written in Bon.

12.
The following is a simplified BON diagram for the Visitor pattern.

A Describe the features required in each deferred class, and a typical effective class in each
hierarchy, to support the pattern.

B Suppose a class NODE_C is added as a subclass of NODE. List and describe the required changes
to all of the classes affected by the addition.

C Would you advise using the Visitor Pattern if the NODE hierarchy changed frequently? Explain
your answer.

D Describe the type of applications that are suitable for the Visitor Pattern.

13.
For each of the following problems characterize the design as creational, structural or behavioural.
Explain your conclusion clearly

1. We must build an application with 15 different screens involving various combinations of 6 user

interface controls (e.g. list boxes) arranged in a simple grid. Performing a mouse action or text
entry on a control (e.g. a button) in a screen affects other controls on the same screen. In all other
=respects the screens are not related and are not similar in appearance. The composition of these
screens is very unlikely to change.

2. We must build a human resources application dealing with the management structure at a large
company. We need to represent the organization chart within the application.

3. We must build an application that allows a user to build and change his portfolio with various
kinds of mutual fund picks from specified subcategories. The mutual fund categories are
technology, old industries, utilities, real estate and mining. The application allows users to pick
categories. It then makes portfolio recommendations depending on the user’s choice. For
example, the user can ask for a low-risk portfolio of utilities and mining stocks, and the
application describes its recommendations within these constraints.

