
2009 November 23

Inheritance
Example Test Questions

1.

 Give and explain the type rule with genericity using an example method call.

2.
Assume class A inherits from class B. Are the invariants of B also invariants of A? How about
creation routines of B? Justify both your answers.

3.
A class B can depend on a class A based on either inheritance or client-supplier relationship. There are
cases where both the client-supplier and inheritance relationships seem appropriate. However, the
Rule of Change and the Rule of Polymorphism favour one over the other.

 Explain under what circumstances you would choose a client-supplier relationship. Which rule is

used to support your decision?

 Explain under what circumstances you would choose an inheritance relationship. Which rule is
used to support your decision?

4.
Describe constraint genericity. How is such genericity related to inheritance? Provide an example
where constraint genericity is useful.

5.

 When you redefine a feature, you can redefine the signature and body independently. Explain why you
need redefinition of each part and what are the constraints on redefinition.

6.
When you redefine a feature, there are two parts of a feature you can redefine independently. Explain
what they are, why you need redefinition of each part and what are the constraints on redefinition?

7.

 What is the rule of change in the context of deciding between use and inheritance? Give three natural
language definitions and their corresponding Eiffel class definitions that illustrate the choices in
deciding between use and inheritance?

8.

 When using multiple inheritance sharing and replication of attributes are the choices that are available.
Using a BON diagram, give an example where sharing is not an option. Explain why sharing is not an
option.

9.

 When using multiple inheritance sharing and replication of attributes are the choices that are available.
Using a BON diagram, give an example where sharing and replication are options. Explain why
sharing is an option and how you get sharing. Explain why replication is an option and how you get
replication.

10.

 When using multiple inheritance some features may be joined. Using a BON diagram, give an
example where join is an option and explain under what conditions join is possible.

2009 November 23 Inheritance Example Test Questions Page 2 of 10

11.

 Explain what happens to the export status of inherited features in an heir.

12.

 Why would you not normally build the QUEUE class from the ARRAY class using inheritance?

13.

 In Eiffel, inherited functions can be redefined as attributes but not vice versa. Why not?

14.

 Consider the following inheritance diagram. What problems can arise and how can they resolved?
You are not required to solve all problems simultaneously, just describe the various problems and their
resolution.

f
g

B
++ f

g

C

f, h, j

A

D

15.

 Consider the following BON diagram.

2009 November 23 Inheritance Example Test Questions Page 3 of 10

PERSON

work : T

+

TA

STUDENT

work ++ : T

TEACHER

A Give and explain one variation of the Eiffel inheritance and adaptation clauses for the class TA

that permit sharing the common feature.
B Give and explain a different variation of the Eiffel inheritance and adaptation clauses for the class

TA that permit sharing the common feature.
C Give and explain the Eiffel inheritance and adaptation clauses for the class TA that permit

replicating the common feature
D Using an example, explain static and dynamic types of an entity and how they relate.

16.

 Explain polymorphism and dynamic binding.

17.

 Explain why the creation status of a feature in the parent has no bearing on the creation status of that
feature in an heir.

18.

 Explain the difference between renaming and redefining an inherited feature.

19.
Is the following inheritance scenario correct? If yes, state why. If not, state what is the problem and
how it can be resolved?

class A[G] feature class B inherit
 f: G A[REAL]
end A[STRING]
 end

20.

 Given following class hierarchy:

PERSON

EMPLOYEE STUDENT

 TA

2009 November 23 Inheritance Example Test Questions Page 4 of 10

and declaration and instructions:

 p : PERSON; e: EMPLOYEE; s : STUDENT; t1, t2 : TA
 create p.make(…); create s.make(…); create t1.make(…)

are the following instructions valid? Give a reason for your answer.
create {PERSON} t2.make(…)
create {TA} e.make(…)
p := t1
s ?= p

21.
In the following design, the class STUDENT_TRAINEE is missing feature adaptation or other Eiffel
inheritance statements, thereby introducing inconsistencies and errors. There is additional missing
program text. Identify what is missing and supply Eiffel program text to correct the program. Assume
the given rename and redefine statements are correct.

class PERSON feature
 eat (what: FOOD) is
 do print ("I eat sometimes!") end

 sleep is do print ("I sleep sometimes!") end

 play is do print ("I play sometimes!") end

end -- class PERSON

class STUDENT
 inherit PERSON rename play as study
 redefine eat
 end
feature
 eat (what: SANDWICH) is
 do print ("I eat sandwich!") end

end -- class STUDENT

class EMPLOYEE
 inherit PERSON rename play as work
 redefine eat
 end
feature
 eat (what: STEAK) is
 do print ("I eat steak!") end

end -- class EMPLOYEE

class STUDENT_TRAINEE
 inherit STUDENT redefine work, eat
 end
 EMPLOYEE redefine eat
 end
feature
 eat (what: STEAK_SANDWICH) is
 do print ("I eat well!") end

end -- class STUDENT_TRAINEE

class FOOD
end -- class FOOD

class STEAK inherit FOOD
end -- class STEAK

class SANDWICH inherit FOOD
end -- class SANDWICH

22.

 The creation inheritance rule states that the creation status of a feature in the parent has no bearing
on its creation status in an heir. Explain what this means and why it is a reasonable rule.

23.
In the following diagram class D inherits two versions of feature "f": one from C and a redefined
version from B. Based on whether "f " is deferred or not, discuss the problems associated with "f" in D
and how they can be resolved.

A

B

D

C

f

f
+
+

2009 November 23 Inheritance Example Test Questions Page 5 of 10

24.

A Consider the following program text.

class CITY feature

 the_city: CITY is
 once
 Result := Current
 end

invariant

 lonely_city: the_city = Current

end -- class CITY

class A

 inherit CITY

end -- class LONDON

class TORONTO

 inherit CITY

end -- class TORONTO

Assuming the class invariant is checked, does the execution of the following statements lead to any
assertion violation in Eiffel? Justify your answer.

city1, city2 : CITY
toronto: TORONTO
london: LONDON
create toronto
create london
city1 := london.the_city
city2 := toronto.the_city

B Assume class LONDON, from part A, is modified as defined below. Draw memory diagrams for
objects created as a result of execution of the set of statements in Part B above. Assume assertion
checking is turned on.

class LONDON
inherit CITY

redefine the_city end
feature
 the_city: LONDON is once Result := Current end

end -- class LONDON

25.
 Consider the following program text.

class THING feature

 thing: THING is
 once
 Result := Current
 end

invariant

class BETTER

 inherit THING

end

class WORSE

 inherit THING

2009 November 23 Inheritance Example Test Questions Page 6 of 10

 only_thing: thing = Current

end

end

Assuming the class invariant is checked, does the execution of the following statements lead to any
assertion violation in Eiffel? Justify your answer.

thing_1, thing_2 : THING
the_worse: WORSE
the_better: BETTER
create the_worse
create the_better
thing_1 := the_better.thing
thing_2 := the_worse.thing

B Assume class BETTER, from part A, is modified as defined below. Draw a diagrams of objects
created as a result of execution of the set of statements in Part A. Assume assertions are turned
on.

class BETTER
inherit SOMETHING

redefine thing end
feature
 thing: BETTER is once Result := Current end

end

26.
The following hierarchy defines players in baseball.

Assume that PITCHER introduces a feature starts (indicating the number of games the pitcher started),
while the class PLAYER introduces a deferred feature display that is implemented by the subtypes.

A A CLOSER is a special kind of pitcher, one who always finishes games. Show the inheritance
clause for CLOSER, including and redefine and export clauses.

B Supose you wanted to modify this design to handle designated hitters, players who only hit and do
not play infield or outfield. What changes would you suggest to the hierarchy?

C In the National League, pitchers also hit. Show modifications to the inheritance hierarchy that
would take into account National League pitchers and American League pitchers (who do not hit).

2009 November 23 Inheritance Example Test Questions Page 7 of 10

D A team has a set of players. Sketch an Eiffel implementation of a routine that would display all

the players on a team.

27.
Suppose you wrote the following four classes but you haven’t tried to compile them. Consider how the
class DELTA can handle possible name clashes.

deferred class ALPHA
feature
 one is do print(“alpha one”) end
 two is do print(“alpha two”) end
 three is do print(“alpha three”) end
 four is deferred end
end

deferred class BETA
 inherit
 ALPHA
 redefine two end
feature
 two is do print(“beta two”) end
end

class CHARLIE
 inherit
 ALPHA redefine two, three end
feature
 two is do print(“charlie two”)
 end
 three is do print(“charlie three”)
 end
 four is do print(“charlie four”)
 end
end

class DELTA
 inherit
 BETA
 rename one as beta_one end
 CHARLIE
 rename one as charlie_one end
 select four
 end
feature
end

The answers to the following questions require either a yes or no, as appropriate, and must give a rationale
that references appropriate rules or principles. A yes or no without a rationale receives a zero grade.

A Is it necessary for class DELTA to include the procedure one in a rename clause? If so, please
explain why. If not, please explain why not.

B Is it acceptable for class DELTA to not refer to the procedure two in a rename, redefine,
undefine, or select clause? If so, you must explain why. If not, you must explain why not, and
describe one way in which the problem can be resolved.

C Is it acceptable for class DELTA to not refer to the procedure three in a rename, redefine,
undefine, or select clause? If so, you must explain why. If not, you must explain why not, and
describe one way in which the problem can be resolved.

2009 November 23 Inheritance Example Test Questions Page 8 of 10

D Is it necessary for class DELTA to refer to the procedure four in a select clause? If so, please
explain why. If not, please explain why not.

28.

Consider the following class hierarchy and program text.

p : PERSON;
t : TEACHER;
s : STUDENT;
ta1, ta2 : TA
create p.make(…)
create s.make(…)
create ta1.make(…)

For each of the following instructions state whether or not the instruction is valid and give the
reason why.

1) create {PERSON} ta2.make(…)
2) create {TA} t.make(…)
3) p := ta1
4) s ?= p

29.
A) We learned that software modeling is difficult: by changing our view point we can rephrase an "is-
a" relationship to a "has-a" relationship. For example "every software engineer is an engineer" can be
rephrased as "every software engineer has an engineer component", therefore changing "inheritance"
relationship to "client-supplier". Discuss what criteria can be used, in such situations, to decide
whether is-a or has-a is the most appropriate relation for the chosen entities.

B) We have two relations between classes: client-supplier and inheritance. Compare these two
relations in terms of reuse, information hiding and protection against change. That is to say which one
of these relationships allow for reuse of services provided by a class, which allows for information
hiding, and which protects a class against change. Justify your answers.

C) In Eiffel a descendent can redefine a function with no argument into an attribute, but not vice
versa. First explain why it is not possible to redefine an attribute into a function. Then explain how a
descendent defining a function into an attribute should handle the postcondition of that function.

30.

A With multiple inheritance sharing and replication of features are the choices that are available.
Using a BON diagram, give an example where sharing and replication are options. Explain why
sharing is an option and give the Eiffel program text that enables sharing. Explain why replication
is an option and give the Eiffel program text that enables replication.

31.

A. With multiple inheritance sharing and replication of attributes are the choices that are available.
Using a BON diagram, give an example where sharing is not an option. Explain why sharing is
not an option.

2009 November 23 Inheritance Example Test Questions Page 9 of 10

32.

Answer the following questions with respect to the program text given at the end of the question.

A What would be the class invariant for class A? Will the class invariant be satisfied immediately after
creating an instance of A – create a.make. Justify your answer completely and in detail.

B Assume that all assertions are changed to true, what would be the result of executing the program text

in the ROOT_CLASS. Justify your answer completely and in detail.

C Is the redefinition of the feature printa in class B correct. Justify your answer in detail by using the
complete pre and post conditions to justify your conclusion.

class D creation make feature
 x : INTEGER
 y : INTEGER

 make is do x := 2 ; y := 5 end

 printa(a : INTEGER) is
 require y > x
 do
 io.put_string("In D a is: ")
 io.put_integer(a)
 ensure y - x > 0
 end

 double : INTEGER is
 require y > 2
 do
 result := 2 * y + x
 ensure result > y + x
 end

 invariant x > 1
end

class C
inherit D
 rename printa as c_print
 redefine double end

creation make feature

 printa(a : INTEGER) is
 require true
 do
 io.put_string("In C a is: ")
 io.put_integer(a)
 ensure true
 end

 double : INTEGER is
 require else y > 0
 do
 result := x + y - x*y
 ensure then result > x + y
 end

 invariant y >= 5
end

class ROOT_CLASS
 creation make
 feature

 a : A ; b : B
 c : C ; d : D

make is do
 !! a.make ; !!b.make
 !! c.make ; !!d.make

 a.printa(a.double)
 d := a
 d.printa(a.double)

end

class B
 inherit D
 redefine printa, make end

creation make feature

class A
 inherit B
 rename printa as b_print
 redefine double, make end
 C
 undefine make

2009 November 23 Inheritance Example Test Questions Page 10 of 10

 z : INTEGER

 make is do
 precursor ; z := -4 end

 printa(a : INTEGER) is
 require else x > 0
 do
 io.put_string("In B a is: ")
 io.put_integer(a)
 ensure then true
 end

 invariant
 z < x or z > y
 y – 5 > x
end

 redefine double
 select c_print end

 creation make feature

 make is do
 precursor
 double := z + x + y
 end

 double : INTEGER

 invariant ???
end

33.
Eiffel has four mechanisms for adaptation. Describe and give an example of each one.

34.

A. What is the rule of change in the context of deciding between use and inheritance?
B. Give three natural language definitions and their corresponding Eiffel class definitions that

illustrate the choices in deciding between use and inheritance?

35.

 What is the purpose of the select clause in Eiffel?

36.

 Can every client-supplier relationship be changed to inheritance? Give an example.

