General Design Example Test Questions

1.

Why is design necessary? What is its purpose?

2.

- A What makes an expression referentially transparent?
- **B** What does it mean for a function to have side effects? How does a side effect of a function affect the referential transparency of an expression?

3.

Explain what the Uniform Access Principle is. Using an example illustrate the benefits of following the Uniform Access Principle in Eiffel.

4.

Explain what is the direct mapping rule?

5.

The *Open-Closed Principle* states that a good module structure should be both closed and open. This double requirement looks like a dilemma, which is solved in object oriented software construction. Explain the principle and describe how it is solved in OOSC.

6.

Explain what is an expanded type and why expanded types are needed.

7.

Describe and explain the "Explicit Interfaces Rule".

8.

Explain what the "Explicit Interfaces Rule" is and the context in which it is used.

9.

What is the self-documentation principle? How does Eiffel support this principle?

10.

Explain the four principles of public program design.

11.

What is the single choice principle?

12.

Among design rules to support modularity, briefly describe the following rules:

small interface rule

few interface rule

explicit interface rule

13.

Explain what is meant by seamlessness in the context of software design.

14.

Give definitions of the following with respect to software design.

Error Defect Fault

15.

What are active data structures? When would they be used? Why are they used?

16.

What is the distinction between design and program?

17.

We have a group of related objects such as the following that need to be shared among several classes, say A, B, C. Describe, in the context of object-oriented design, **two** different methods, other than the *Singleton* pattern, of sharing these global objects.

```
Pi: REAL is 3.141592
Mean radius of earth: REAL is 6371.01 -- mean radius of earth in kilometer
```

Part A: Describe how Method 1 works

What is the major advantage of using this method? What is the major disadvantage of using this method?

Part B: Describe how Method 2 works

What is the major advantage of using this method? What is the major disadvantage of using this method?

18.

Recall that a Multi-Panel Interactive System is a general type of interactive system in which users interact with a set of panels, filling in blanks in each panel and moving to other panels by making choices. Each session goes through a number of states, starting with an initial state and ending with a final one. Each state corresponds to an interactive panel.

Also recall that the top-down functional approach to this problem gave the following solution:

Where execute_session and execute_state are defined as follows:

Execute_session is	execute_state (in s : INTEGER , out c : INTEGER) is
Execute a complete session	c contains the user's choice for next state
local state, next : INTEGER	local a : ANSWER ; ok :BOOLEAN
do	do
state := initial start in initial state	repeat
repeat	display (s) display panel for state s
next is a var parameter in execute	read (s, a) get user answer in a
execute_state (state, next)	ok := correct(s, a)
state := transition (state, next)	until ok end
until is_final (state)	process (s, a)
end	$c := next_choice(a)$ get user choice for panel
	end

- **A** It is suggested that various modules, given by this solution, are tightly coupled with each other and with the choice of application. Explain why.
- **B** Explain why this solution violates the Single-Choice Principle.
- C Does this solution provide reusable parts? Explain your answer.

19.

Describe each of the following object oriented design principles: abstraction, encapsulation, modularity.

20.

Modular design issues deal with information hiding and independence. Explain what is meant by these terms

21.

Briefly describe the following terms in the context of modular design and complete the complete the relevant sentence:

Cohesion: a module's property indicating ??? Coupling: a module's property indicating ??? It is desirable to have software modules with ??? coupling and ??? cohesion

22.

It is desired for a software construction methodology that supports decomposition and composition. Briefly describe each term:

Decomposition Composition

23.

t has been suggested that decomposability and composablity are sometimes contradictory. Explain why.