
2009 November 23

Design by Contract
Example Test Questions

1.
Explain when and why one can use Design by Contract.
Explain when and why one cannot use Design by Contract.

2.

 A State and explain the correctness rule for a class with respect to its assertions for a creation
routine.

 B State and explain the formal correctness rule for a class with respect to its assertions for exported
routines.

C State and explain the formal correctness rule for retry inducing rescue clauses (does a retry).

 D State and explain the formal correctness rule for failure inducing rescue clauses (doesn’t do a
retry).

3.

 Describe the benefits and obligations of the client and supplier when using design by contract.

4.
In the context of software environment define the term exception.
Does every exception lead to a routine failure? Justify your answer.
Discuss the two legitimate responses to an exception. Justify your answers.

5.

 A What is defensive programming?

 B Explain why defensive programming is a poor method.

 C Defensive programming suggests the following programming style.

remove (object) is
require size > 0
 if size < 1 then throw exception
 else ... rest of procedure ...
end remove

Using example pseudocode from the client side, show why defensive programming is futile, if the
client is a good programmer.

6.

 Given following two classes:

class B feature
 x : INTEGER; y : INTEGER
 do_work (a : INTEGER) is
 require
 alpha: a < 0
 …
 ensure
 beta: x >= a + 20 and
 y < old y + x
 end

class C feature
 inherit B redefine do_work end
 do_work (a : INTEGER) is
 require
 gamma: a <= 0
 …
 ensure
 delta: x >= 21 + a and
 y – old y - 20 < a
 end

2009 November 23 Design by Contract Example Test Questions Page 2 of 11

end

end

Assume we have an Eiffel compiler that does not enforce the Assertion Redeclaration Rule. We
therefore need to use our knowledge of mathematics and logic to verify the subcontracting by
class C eliminates the possibility of cheating. State what needs to be proved and prove it.

7.

 Let A and B be two classes related as shown by the following BON diagram.

In order to prevent cheating, the redeclaration of the assertions in an heir must follow the
"Assertion Redeclaration Rule". Give a definition for this rule. Using references to feature r of
class B, explain this rule.

8.

 The following figure shows a simple class interface for a class MY_SET that holds only integers. The
elements of the set are represented as an ARRAY of integers.

MY_SET

MY-SET

contents : ARRAY[INTEGER]

is_empty : BOOLEAN

is_full : BOOLEAN

insert (x : INTEGER)

remove (x : INTEGER)

member (x : INTEGER) : BOOLEAN

union (s : MY_SET)

 Give require and ensure clauses for each of the set features. Write your contracts as formally as
possible. You can use any features of ARRAY that you like in your contracts; if you are unsure as to
which features ARRAY possesses, clearly state your assumptions. You may use BON assertion
language. Answers expressed in mathematics receive significantly higher grades than answers
expressed in English.

9.

 Suppose you are given the following classes.

class A
feature
 x : INTEGER ; y : INTEGER

 do_work (a : INTEGER) is
 require a > 0

class B
inherit A redefine do_work end
feature

 do_work (a : INTEGER) is
 require else a >= 0

2009 November 23 Design by Contract Example Test Questions Page 3 of 11

 ensure x >= a + 10
 and y < old y + 5
 end

end

 ensure then x >= 14 + a - 3
 and y - old y = 3
 end

end

Is the redefinition of feature do_work valid according to Eiffel's refinement rule? Carefully prove
that your answer is correct.

10.

 Suppose a class has an invariant that includes the clause (x >= 0 and y = 0). I want to inherit from this
class and in doing so, add a new clause (x >= 0 implies y >= 0). Is this acceptable? Why or why not?

11.

 State the three main criteria used to define what is meant by “reasonable preconditions” in design by
contract.

12.

 The exception handling principle deals with two ways of handling exceptions. Describe those two
ways. Describe their pre and post conditions. Give an Eiffel template and show where the conditions
are met.

13.

Answer the following questions with respect to the following program text..

 A What would be the class invariant for class A? Will the class invariant be satisfied immediately
after creating an instance of A – create a.make. Justify your answer completely and in detail.

 B Assume that all assertions are changed to true, what would be the result of executing the program
text in the ROOT_CLASS. Justify your answer completely and in detail.

 C Is the redefinition of the feature print in class B correct. Justify your answer in detail by using the
complete pre and post conditions to justify your conclusion.

class D creation make feature
 x : INTEGER
 y : INTEGER

 make is do x := 2 ; y := 5 end

 printa(a : INTEGER) is
 require y > x
 do
 io.put_string("In D a is: ")
 io.put_integer(a)
 ensure y - x > 0
 end

 double : INTEGER is
 require y > 2
 do
 result := 2 * y + x
 ensure result > y + x
 end

 invariant x > 1

class C
inherit D
 rename printa as c_print
 redefine double end

creation make feature

 printa(a : INTEGER) is
 require true
 do
 io.put_string("In C a is: ")
 io.put_integer(a)
 ensure true
 end

 double : INTEGER is
 require else y > 0
 do
 result := x + y - x*y
 ensure then result > x + y
 end

class ROOT_CLASS
 creation make
 feature

 a : A ; b : B
 c : C ; d : D

make is do
 create a.make
 create b.make
 create c.make
 create d.make

 a.printa(a.double)
 d := a
 d.printa(a.double)

end

2009 November 23 Design by Contract Example Test Questions Page 4 of 11

end invariant y >= 5
end

class B
 inherit D
 redefine printa, make end

creation make feature

 z : INTEGER

 make is do
 precursor ; z := -4 end

 printa(a : INTEGER) is
 require else x > 0
 do
 io.put_string("In B a is: ")
 io.put_integer(a)
 ensure then true
 end

 invariant
 z < x or z > y
 y – 5 > x
end

class A
 inherit B
 rename printa as b_print
 redefine double, make end
 C
 undefine make
 redefine double
 select c_print end

 creation make feature

 make is do
 precursor
 double := z + x + y
 end

 double : INTEGER

 invariant ???
end

14.

 Describe when a class invariant must be true?
Describe when a class invariant may be false.

15.

 Give require and ensure clauses for a class COMPLEX, representing complex numbers. Recall that a
complex number is of the form a + ib, where a and b are real numbers, and i2 = –1. Write your
contracts as formally as possible. Answers expressed in mathematics receive significantly higher
grades than answers expressed in English.

class COMPLEX
creation make
feature
 a : REAL ; b : REAL
 make(a : REAL; b : REAL)
 add(c : COMPLEX) -- add c to the object
 subtract(c : COMPLEX) -- Subtract c from the object
 multiply(c : COMPLEX) -- multiply the object by c
 length : REAL -- returns the length of the complex number

 end -- COMPLEX

16.

 Let A and B be two classes related as shown by the following BON diagram.

2009 November 23 Design by Contract Example Test Questions Page 5 of 11

A Recall that through inheritance and dynamic binding there is a potential for cheating A with
respect to its contract with B. Use references to feature r of class B to show exactly how
inheritance and dynamic binding can be used to cheat A.

B In order to prevent cheating, the redeclaration of the assertions in an heir must follow the
"Assertion Redeclaration Rule". Using references to feature r of class B, explain this rule.

C If feature r of class B is redefined into an attribute in a proper descendent of B discuss how α and
β will be handled?

17.

 Although both of the correctness formulae "{False} A {Q}" and "{P} A {True}" require minimum
effort on the part of the supplier, there is a subtle distinction between them. Explain what it is.

18.

 In the context of design by contract recall that, for a routine, it is desirable to have the weakest
precondition and the strongest postcondition that make its task feasible. Explain why this is reasonable.
Hint: think about starting a business and offering a set of services to clients.

19.

 Explain why design by contract is suitable for software-to-software communication and not for
software-to-human or software-to-outside-world communication.

20.

 The routine foo, shown below, is a client of MATRIX and has been written according to contract by
using the MATRIX feature singular which returns the solution, if the current matrix is singular.

 a : MATRIX; b, x : VECTOR
 foo is do
 … -- instructions to create a, b, and x
 if not a.singular then
 x := a.solution(b)
 else
 io.put_string(“solution not possible”)
 end
 end -- foo

Assuming that a pre-condition violation will occur if solution is called on a singular matrix, rewrite foo
so that it does not check the pre-condition of solution but still behaves as though it had been
programmed according to contract.

21.

 Give class invariant, require and ensure clauses for a class PRIORITY_QUEUE. Do not forget to
annotate your clauses with English statements.

Priority queues are ordered by priority in the sense that the item removed from the queue is the item
with the highest priority (the larger the integer the higher the priority). Other than that, the standard
queue discipline holds.

class QUEUE_ITEM[G]
creation make

2009 November 23 Design by Contract Example Test Questions Page 6 of 11

feature
 priority : INTEGER ; time : INTEGER ; data : G
 make(thePriority : INTEGER; theTime : INTEGER; theData : G)
 theData : data -- returns the data
 theTime : INTEGER -- returns the time
 thePrioirity : INTEGER -- returns the priority
end -- QUEUE_ITEM

class PRIORITY_QUEUE[G]
creation make
feature { NONE }

 pq : LIST[QUEUE_ITEM]

 time : INTEGER -- Simulate with an increasing counter for each item
 -- added to the queue.

feature

currentItem : QUEUE_ITEM -- Last queue item to be enqueued or dequeued

make

 require ???

 ensure ???

enqueue(item : G ; priority : INTEGER) -- Add to priority queue

 require ???

 ensure ???

dequeue -- Remove highest priority item.

 require ???

 ensure ???

invariant ???

end -- PRIORITY_QUEUE

22.
You are given the following defined class ROOM with the only features you need for this problem.

class ROOM
feature {ANY}
 status : STATUS -- One of reserved, unreserved, occupied, repair
 guest : GUEST -- Only for HOTEL void unless occupied or reserved.
end

Write require, ensure and class invariant assertions for the following methods of a class HOTEL that
represents rooms and guests at a hotel. The minimum size of a hotel is 100 rooms. Write your
assertions in as formal a mathematical notation as possible. Your assertions do not have to be
executable.

class HOTEL creation make
feature {NONE}

avail_rooms : LIST[ROOMS] -- List of all the rooms available not under repair
repair_rooms : LIST[ROOMS] -- List of all the rooms under repair
capacity : INTEGER -- Number of rooms in the hotel

feature
make (size : INTEGER) is
 -- Build a new hotel with size rooms where all rooms are available.

2009 November 23 Design by Contract Example Test Questions Page 7 of 11

 require ???
 ensure ???

vacancy : BOOLEAN is
 -- Returns true if and only if there is an unreserved room.

 require ???
 ensure ???

unreserved_check_in (guest : GUEST) is
 -- The guest has not made a reservation. Puts the guest into an unreserved room.

 require ???
 ensure ???

remove_room_for_repair (room : ROOM) is
 -- Moves an unoccupied room from the available list to the repair list.

 require ???
 ensure ???

invariant

end -- HOTEL

23.

The following Eiffel system compiles correctly (execution starts at make of ROOT_CLASS).
However, when executed it creates a contract violation. Explain why that is, and describe how you
would modify the two classes to fix the problem.

24.

 The class SET describes collection of objects where each element must be unique.

Here we have provided part of the code for this class. Your task is to complete the missing contracts
for each routine. You DO NOT need to implement any of these routines.

indexing
 description: "Collection, where each element must be
unique."

deferred class
 SET [G]

class ROOT_CLASS

create make

feature
 make is
 do
 create t
 end

 t: TEENAGER

end

class TEENAGER

feature
 age: INTEGER

invariant
 age > 12 and age < 20

end

2009 November 23 Design by Contract Example Test Questions Page 8 of 11

inherit
 COLLECTION [G]
 redefine
 changeable_comparison_criterion
 end
feature -- Measurement

 count: INTEGER is
 -- Number of items
 deferred
 end

feature -- Element change

 extend (v: G) is
 -- Ensure that set includes `v'.
 -- Was declared in SET as synonym of `put'.
 deferred
 ensure then
 in_set_already:
 added_to_set:
 end

 put (v: G) is
 -- Ensure that set includes `v'.
 -- Was declared in SET as synonym of `extend'.
 deferred
 ensure then
 in_set_already:
 added_to_set:
 end

feature -- Removal

 prune (v: G) is
 -- Remove `v' if present.
 deferred
 ensure then
 removed_count_change:
 not_removed_no_count_change:
 item_deleted:
 end

end -- class SET

25.
You are given the following partially defined class TABLE with only the features you need for this
problem.

class TABLE
feature {ANY}
 id : SET[LABEL] -- Every table needs a unique identifier
 chairs : INTEGER -- Number of people that can sit at the table
end

 Write require, ensure and class invariant clauses for the following features in a RESTAURANT class.
Combining two tables loses one seating position and has the labels from both tables. Splitting a table
in two adds one additional seating position and labels are arbitrarily divided. Tables of size 1 are not
permitted. Write your clauses in: (1) English, at least; and (2) in as formal a mathematical notation as
possible. Your clauses do not have to be executable.

class RESTAURANT creation make

2009 November 23 Design by Contract Example Test Questions Page 9 of 11

feature

 place : LIST[TABLE] -- Keep track of the tables
 init_chairs : INTEGER -- Number of chairs in the initial restaurant
 capacity : INTEGER -- Current number of people that can be seated at tables
 spare_chairs : INTEGER -- Number of chairs not at tables

 class invariants ???

make(initial_chairs : INTEGER) is

-- Creates a restaurant that has an initial capacity for a minimum of 20 people.
-- Initially all the chairs are at two seat tables. Every table has one label in its id.

 require ???
 ensure ???

combine(table1 : TABLE; table2 : TABLE) is
-- combines table1 and table2 into a single larger table.

 require ???
 ensure ???

 split(big_table : TABLE; size1 : INTEGER; size2 : INTEGER) is

-- split the big_table into two smaller tables with size1 chairs and size2 chairs.

 require ???
 ensure ???

You are given the following partially defined class BOOK with the only features you need for this
question.

class BOOK
feature {ANY}
 state : STATUS -- Books available for lending are either reserved,
 -- or unreserved. Books not available for lending
 -- are borrowed or under_repair
 borrower : BORROWER -- Only for LIBRARY void unless borrowed or reserved.
End

26.

Complete the require, ensure and class invariant clauses for the following methods of a class
LIBRARY that represents books and borrowers. Write your clauses in: (1) English, at least; and (2) in
as formal a mathematical notation as possible; your clauses do not have to be executable.

class LIBRARY creation make
feature

avail_books : SET[BOOKS] -- List of available books for lending
unavail_books : SET[BOOKS] -- List of unavailable books for lending
number_of_books : INTEGER -- Number of books owned by the library, minimum
 -- is 10,000.

make (books : SET[BOOK]) is
 -- Build a library containing the books in the input set.

 require books ≠ void
 ???
 ensure ???

reserved_count : INTEGER is
 -- Returns the number of reserved books in the library

 require ???

• Must use this information to distinguish cases

2009 November 23 Design by Contract Example Test Questions Page 10 of 11

 ensure ???

borrow (book : BOOK; borrower : BORROWER) is
 -- The borrower checks the given book out of the library.

 require book ≠ void and borrower ≠ void

 ensure ???

repair (book : BOOK) is
 -- Book needs repair. It becomes unavailable for lending unless it is reserved.

 require book ≠ void
 ???
 ensure ???

invariant ???

end – LIBRARY

27.
Complete, in mathematical notation, the contract for the student association. Do not use agents.

Each study group has a name and a list of its members. Each student has a name and a list of the
names of the study groups in which they want to be members.

class STUDY_GROUP class STUDENT
 name : STRING name : STRING
 members : SET[STUDENT] in_group : SET[STRING]
end end

class STUDENT_ASSOCIATION
 study_groups : SET[STUDY_GROUP] -- All the study groups in the association
 members : SET[STUDENT] -- All the students in the association

make(students : SET[STUDENT] , avail_groups: SET[STRING])
 -- Creates an association with the study groups according to the preferences of the students.
 -- students – the students making the association
 -- avail_groups – the list of names of all the study groups in the association

require ???
 -- Every student wants to be in 1 to 3 study groups. # is “the number in the set”

-- Between 3 and 5 students want to be in each available study group.
-- The names of the study groups that students want to be in are in avail_groups.

Ensure ???

-- There are no members of the association other than the students making the association and all
-- the students are members of the association.
-- The study groups in the association are precisely those in avail_groups.

invariant

end – STUDENT_ASSOCIATION

28.
The members of “The International Society of Bureaucrats” are developing some programs to help
them manage the innumerable clubs that they have. As a part of the interview process as a software
designer to write the class contracts you are to complete the following sample contracts in as formal a
mathematical notation as possible. Do not use agents.

2009 November 23 Design by Contract Example Test Questions Page 11 of 11

Each committee has a name and a list of its members. Each person has a name and a list of the names
of the committees on which they serve once the club has been made.

class COMMITTEE class PERSON
 name : STRING name : STRING
 members : SET[PERSON] serves_on : SET[STRING]
end end

Each committee in a club must have between three and seven members. No person can serve on more
than five committees but each person must serve on at least one. Committees do not exist until the
club is made.

class CLUB
 committees : SET[COMMITTEE]
 members : SET[PERSON]

 make_club(people : SET[PERSON], first_committees : SET[STRING])
 -- Creates the committees according to the preferences of the starting members.
 -- people – the starting members of the club
 -- first_committees – the list of names of the initial committees

 require ???
 -- Everyone serves on 1 to 5 committees.

 -- Between 3 and 7 people serve on each committee.

 -- The names of the committees that people want to serve on are the ones in first_committees.
 ensure ???

-- The people forming the club are members and there are no other members.
-- The committees after making the club are precisely those in first_committees.

end

 change_committee(p : PERSON ; from, to : COMMITTEE)
 -- The person, p, stops serving on the from committee and starts serving on
 -- the to committee.

 require ???

 -- p serves on the from committee and is not a member of the to committee.
 -- Sufficient members will be left on the from committee after p leaves.
 -- There is space in the to committee to accept a new member.

 ensure ???
-- p has changed committees.

invariant ???
-- At all times every club member serves on 1 to 5 committees.

-- At all times every committee has 3 to 7 members.
-- The members of every committee are all the people who want to serve on that committee.

end

29.

A The exception handling principle deals with two ways of handling exceptions. Describe one of
those two ways. Describe its pre and post conditions; using Hoare triples is most effective.

B Give an Eiffel template and show where the conditions are met.

