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Assertions & Verification 
Example Test Questions 

1.  

A Give a general template for refining an operation into a sequence and state what questions a 
designer must answer to verify the sequence is a correct refinement. 

B Give a general template for refining an operation into a choice and state what questions a designer 
must answer to verify the choice is a correct refinement. 

C Give a general template for redefining an operation into a loop and state what questions a designer 
must answer to verify the loop is a correct refinement. 

2.  

 Explain what is meant by strong and weak assertions. 

3.  
There are 5 types of assertions that can be used in program design.  Describe each type of assertion and 
how that assertion type is used in the design of programs. 

4.  
Give the best precondition, postcondition and loop invariant for the following algorithm to do a binary 
search on an array A[1 .. N].  Your work should use as much mathematical notation as possible to 
capture the relevant information. 

 
low ← 1 
high ← N 
Result ←  0 
  
while Result = 0 and low ≤ high do 
    mid ← (low + high)/2  
    if A[mid] = k then Result ← mid 
    elseif A[mid] < k then low ← mid + 1 
    else high ← mid - 1 
    fi   
end while 

5.  

 What would be the best precondition, postcondition and loop invariant for the following algorithm to 
find a span of dash characters in an array. 

 
charPointer := 1 
loop exit when textLine(charPointer) not equal dashChar 
  charPointer := charPointer + 1 
end loop 

6.  

 What would be the best precondition, postcondition and loop invariant for the following correct 
algorithm to find the maximum integer and its index  in the array A[1..N]. 

 
max := 0  ;  maxIndex :=  0 
j := 1 
while j <= N do 
  if max < A[j] then max = A[j] ; maxIndex := j end if 
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  j := j + 1 
end while 

7.  

Prove the following algorithm to sum the odd integers in the range 1 to N inclusive is correct.  Clearly 
show the correspondence with the questions a designer must ask when verifying a loop is the correct 
refinement of an operation. 
 
Precondition:    

! 

N > 0 
 

Postcondition:   

! 

sum = { j :1..N |odd( j)• j}"  
 

Loop invariant: 

! 

sum = { j :1..p |odd( j)• j}"  
 
sum := 0 
p := 0 
while p < N 
    p := p + 1 
    if odd(p) then sum := sum + p fi 
end while 

8.  

 What is a loop invariant?  When is it used?  How is it used?  Why is it used?  Where is it used? 

9.  

 Given a loop, pre & post conditions and loop invariant prove the loop is correct or is incorrect. 

10.  

 Given pre & post conditions and a loop invariant create the corresponding program text in Eiffel. 

11.  

 What would be the best loop invariant and variant for the following algorithm. 
 

require x = a * a 
 

from  
invariant ??? 
variant  ??? 
until x = 0 
loop 
    y := y + 1 ; x := x - 1 
end 
 

ensure y = a*a + old y 
 

 Using your loop invariant and variant, verify that the algorithm given above achieves the post-
condition. 

12.  

 Consider the following pseudo code which implements the selection sort. It works by looking through 
an  array of n elements, A, picking the smallest element and moving it to the 1st position. It then, 
repeats the same thing on the sub-array, A[2..n], defined by positions 2…n, then, A[3..n], defined on 
positions 3..n and so on.  
 What is the best loop invariant for the outer loop? First find the loop invariant for the inner loop 
(lines 3-7) and then use this to find the invariant of the outer loop (lines 1-11).  
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 Explain how the loop invariant can be used to prove the correctness of the main loop (lines 1-11)? 
(Hint: what is the relationship between A[1..k] and A[k+1..n] after  kth iteration of the main loop?)  

 
1 for i from 1 to n-1 do  
2     small = i 
3     for j from i+1 to n do  
4           if A[j] < A[small] then  
5               small = j 
6           end if 
7   end for  
8   temp := A[small] 
9   A[small] := A[i] 
10   A[i] := temp 
11 end for 

13.  

 What would be the best precondition, postcondition and loop invariant for the following correct 
algorithm to find the longest string in an array of strings A[1..N] 

s := null; longestIndex := 0 
j := 1 
while j <= N do 
 if length(s) < A[j] then 
  s := A[j]; longestIndex := j 
 end-if 

end-while 

14.  

 Give, both in English and in mathematical notation, the best precondition, postcondition, loop invariant 
and loop variant for the following algorithm to search the array a[lb .. ub] for the position of the 
value key.  The Eiffel notation "a @ j" is equivalent to  "a[j]" in Java/C++/C. 

 

search(a : ARRAY[ITEM]; key : ITEM) : INTEGER is 
  require  ??? 
  local j, n : INTEGER 
  do 
  from j := a.upperbound ; Result := a.lowerbound – 1 
  invariant ??? 
  variant  ??? 
  until j = Result 
  loop 
    if a @ j = key then Result := j 
    else j := j – 1 
    end 
  end 
  ensure  ??? 
end 

15.  

 The following code segment computes the square of n 
 

square := 0 
increment := 1 
for  i:= 1 to n do  
 square := square + increment  
 increment := increment + 2 
end for  

 A What are the best loop invariant and variant. 
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 B Use the invariant and the variant from part A to argue the correctness of the loop.  

 C Explain why an invariant such as "i >= 1" is not of much value 

16.  

 The greatest common divisor (GCD) of two positive integers, a and b, denoted by GCD(a, b)  is the 
largest natural number that divides both a and b. Some examples include GCD(9,6) = 3, GCD(16,  5) = 
1. Euclid’s algorithm computes the GCD of two numbers as follows 

  

Step  A: Write a = q *b + r     where 0 <= r  <= b.  
Step B: If r > 0, then set a = b,  b = r and go to Step A.  Otherwise last b is the GCD  

The equation .  a = q *b + r   implies that GCD(a, b) = GCD(b, r) and hence the process works.  
Here are several iterations: 

a = q1*b + r1 where 0 <= r1 <= b 
b = q2*r1 + r2 where 0 <= r2 < r1 
r1 = q3*r2 + r3 where 0 <= r3 < r2  

Complete require, ensure, variant and invariant clauses for the gcd method.  
gcd (a, b: INTEGER): INTEGER is  
  -- Greatest common divisor of a and b. 
 require  
  ??? 
 local  
  x, y, remainder: INTEGER 
 do  
     from  
  x := a 
  y := b 
  remainder := x \\ y  -- remainder of x divided by y 
     invariant  
   ??? 
     variant  
   ??? 
     until  
  remainder = 0 
     loop  
  x := y 
  y := remainder 
  remainder := x \\ y 
     end  
     Result := y 
 ensure  
  ??? 
end 

17.  
Verify that the following algorithm to partition an array, a[1 .. N], into those elements that are 
smaller than a[1] and those that are larger than a[1] is correct. 
 
 
         Array on exit        elements of a  < old a[1]    old a[1]   elements of a > old a[1] 
 

 
partition(a : ARRAY[INTEGER]): INTEGER is 
  require a.lower_bound ≤ 1  ∧  a.upper_bound ≥ 1  
          ∀ i : 2 .. a.upper_bound • a[1] ≠ a[i] 
  local split, last : INTEGER   
  do 
    from split := 1 ; last := 2 
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    invariant ∀ k : 2 .. split • a[k] < a[1]   ∧   ∀ k : split+1 .. last-1 • a[k] > a[1] 
     variant a.upperbound – last + 1 
     until last > a.upper_bound do 
       if a[last] < a[1] then split := split + 1 
                              swap(a[last], a[split]) 
                              last := last + 1 
       else last := last + 1 
       end 
    end 
    swap(a[1], a[split]) 
    Result := split 
  ensure a[Result] = old a[1]  

        ∀ k : 1 .. Result-1 • a[k] < a[Result]  
        ∀ k : Result+1 .. a.upper_bound • a[Result] < a[k] 

  end 
 

18.  

 The following routine correctly computes 2n – 1 for a given integer n.  Determine the loop 
invariant and variant and write it in the space provided within the program text.  Note that both 
assertions have to be Eiffel executable. 

  
pow_2 (n : INTEGER) : INTEGER is  
    -- result is 2^n - 1 
  require n >= 0 
  local i, increment: INTEGER 
  do  
    from  
   i := 0 
   increment := 1 
   Result := 0 
    invariant ??? 
    variant ??? 
        until i >= n 
    loop  
   Result := Result + increment 
   increment := increment * 2 
   i := i + 1 
    end  
  ensure Result = 2 ^ n - 1 
  end  

19.  
The following routine correctly computes the 2^n – 1 for a given integer n.  2^n is 2 to the power of n.  
Prove the algorithm is correct. 
  

pow_2 (n : INTEGER) : INTEGER is  
    -- result is 2^n - 1 
  require n >= 0 
  local i, increment: INTEGER 
  do  
    from  
   i := 0 
   increment := 1 
   Result := 0 
    invariant  Result = 2^i – 1 and increment = 2 ^ i 
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    variant  n - i 

    until i >= n 
    loop  
   Result := Result + increment 
   increment := increment * 2 
   i := i + 1 
    end  
    ensure Result = 2 ^ n - 1 
  end 

20.  
The following routine employs a loop to compute n*(n+1) for a given non-negative integer n.  There 
is, however, an error in its implementation.  Your task is to use the given loop invariant and the variant 
to prove the “correctness” of the loop.  If you are careful with your proof, then the source of the error 
should reveal itself at the proper step of the proof.  Follow the normal course of proof until you reach 
an inconsistency, then indicate what is the source of the error in the routine that gives the 
inconsistency, correct it and complete the proof.  
 

sum2 (n : INTEGER) : INTEGER is  
    -- Compute n * (n + 1) 
  require n >= 0 
  local i : INTEGER 
  do  
    from i := 0 
    invariant Result = i * (i + 1) 
    variant n - i + 1 
    until i >  n 
    loop  
        i := i + 1 
        Result := Result + 2 * i 
    end  
  ensure Result = n * (n + 1) 
  end 

21.  
The following routine employs a loop to compute  n^2 (n2)  for a given non-negative integer n.  Verify 
the routine is correct.  There is, however, an error in its implementation.  Your task is to use the given 
loop invariant and the variant to prove the “correctness” of the loop.  If you are careful with your 
proof, then the source of the error should reveal itself at the proper step of the proof.  Follow the 
normal course of proof until you reach an inconsistency, then indicate what is the source of the error in 
the routine that gives the inconsistency, correct it and complete the proof. 

   
square (n: INTEGER): INTEGER is  
  -- result is n^2 
  require n >= 0 
  local i, increment: INTEGER 
  do  
    from i := 0 ; increment := -1 
    invariant Result = i^2 and increment = 2*i - 1 
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22.     until i > n 
    loop  
      i := i + 1 
 increment := 2 * i - 1 
      Result := Result + increment 
    end  
    ensure Result = n ^ 2 
  end  

23.  
Consider the following pseudo code, which implements the selection sort. It works by looking through 
an  array of n elements, A, picking the smallest element and moving it to the 1st position. It then, 
repeats the same thing on the sub-array, A[2..n], defined by positions 2…n, then, A[3..n], defined on 
positions 3..n and so on.  

 
1 i := 1 
2 while i <= n do { 
3     small := i 
4     j = i + 1 
5     while j <= n do {  
6             if A[j] < A[small] then small := j fi 
7             j := j + 1 
8             } 
9     temp := A[small] 
10    A[small] := A[i] 
11    A[i] := temp 
12    i := i + 1 
13    } 

 
A What is the best loop invariant for the inner loop (lines 5..8)? 
B What is the best loop invariant for the outer loop (lines 2-13)?  
C Use the inner loop invariant to show the correctness of the inner loop (lines 3..8).  

24.  
A positive integer n is said to be prime if it is only divisible by 1 and itself. 

 

∀  i : INTEGER • i | n ⇒ (i = 1 ∨ i = n) where i | n is read as i divides n 
 

The following Eiffel routine correctly tests if a given integer, n, is prime by verifying that none of the 
integers 2, 3, …, floor(sqrt(n)) divides n. For this question you need to perform the following tasks. 
a) Complete the postcondition for the function prime. 
b) Write a proper loop invariant, using BON assertion language, and variant for the loop.  
c) Use results of the previous two steps to prove the correctness of the loop. 
 

 prime (n: INTEGER): BOOLEAN is  
     -- Asserts that n a prime number 
   local  
     i   : INTEGER  -- Test divisor 
          max : INTEGER  -- Maximum integer to try 
     do  
  from  
    i := 2 
    max := floor (sqrt (n)) 
    Result := True  
  until  
    i > max  or  not Result 
  loop  



2009 November 23 Assertion & Verification Example Test Questions Page 8 of 8  

 

    Result := not ((n \\ i) = 0)  -- \\ is the mod function 
    i := i + 1 
  end  
     ensure  ??? 

 
 

    end 
  

Loop invariant 
Write the loop invariant, using BON assertion notation not Eiffel programming language, and loop 
variant.   
Loop variant  ??? 

 

25.  
The following algorithm multiplies two integers using addition.  Prove the algorithm works correctly.  
The more mathematically precise you are, the higher the grade. 
 
Pre-condition:  a ≠ 0 and b ≠ 0 
Post-condition:  z = abs(a*b)   –  abs is the absolute value, z > 0 
Loop invariant:   z + u*y = x*y 
 

1 if a < 0 then x := –a else x := a 
2 if b < 0 then y := -b else y := b 
3 z := 0 
4 u := x 
5 repeat 
6   z := z + y 
7   u := u – 1 
8 until u = 0 

26.  
Give, both in English and in mathematical notation, the best precondition, postcondition, loop invariant 
and loop variant for the following algorithm to search the array a[lb .. ub] for the position of the 
value key.  The Eiffel notation "a @ j" is equivalent to  "a[j]" in Java/C++/C. 

 

search(a : ARRAY[ITEM]; key : ITEM) : INTEGER is 
  require ??? 
  local j, n : INTEGER 
  do 
  from j := a.upperbound ; Result := a.lowerbound – 1 
  invariant ??? 
  variant ??? 
  until j = Result 
  loop 
    if a @ j = key then Result := j 
    else j := j – 1 
    end 
  end 
  ensure ??? 
end 

 
 


