
2009 November 23

Assertions & Verification
Example Test Questions

1.

A Give a general template for refining an operation into a sequence and state what questions a
designer must answer to verify the sequence is a correct refinement.

B Give a general template for refining an operation into a choice and state what questions a designer
must answer to verify the choice is a correct refinement.

C Give a general template for redefining an operation into a loop and state what questions a designer
must answer to verify the loop is a correct refinement.

2.

 Explain what is meant by strong and weak assertions.

3.
There are 5 types of assertions that can be used in program design. Describe each type of assertion and
how that assertion type is used in the design of programs.

4.
Give the best precondition, postcondition and loop invariant for the following algorithm to do a binary
search on an array A[1 .. N]. Your work should use as much mathematical notation as possible to
capture the relevant information.

low ← 1
high ← N
Result ← 0

while Result = 0 and low ≤ high do
 mid ← (low + high)/2
 if A[mid] = k then Result ← mid
 elseif A[mid] < k then low ← mid + 1
 else high ← mid - 1
 fi
end while

5.

 What would be the best precondition, postcondition and loop invariant for the following algorithm to
find a span of dash characters in an array.

charPointer := 1
loop exit when textLine(charPointer) not equal dashChar
 charPointer := charPointer + 1
end loop

6.

 What would be the best precondition, postcondition and loop invariant for the following correct
algorithm to find the maximum integer and its index in the array A[1..N].

max := 0 ; maxIndex := 0
j := 1
while j <= N do
 if max < A[j] then max = A[j] ; maxIndex := j end if

2009 November 23 Assertion & Verification Example Test Questions Page 2 of 8

 j := j + 1
end while

7.

Prove the following algorithm to sum the odd integers in the range 1 to N inclusive is correct. Clearly
show the correspondence with the questions a designer must ask when verifying a loop is the correct
refinement of an operation.

Precondition:

!

N > 0

Postcondition:

!

sum = { j :1..N |odd(j)• j}"

Loop invariant:

!

sum = { j :1..p |odd(j)• j}"

sum := 0
p := 0
while p < N
 p := p + 1
 if odd(p) then sum := sum + p fi
end while

8.

 What is a loop invariant? When is it used? How is it used? Why is it used? Where is it used?

9.

 Given a loop, pre & post conditions and loop invariant prove the loop is correct or is incorrect.

10.

 Given pre & post conditions and a loop invariant create the corresponding program text in Eiffel.

11.

 What would be the best loop invariant and variant for the following algorithm.

require x = a * a

from
invariant ???
variant ???
until x = 0
loop
 y := y + 1 ; x := x - 1
end

ensure y = a*a + old y

 Using your loop invariant and variant, verify that the algorithm given above achieves the post-
condition.

12.

 Consider the following pseudo code which implements the selection sort. It works by looking through
an array of n elements, A, picking the smallest element and moving it to the 1st position. It then,
repeats the same thing on the sub-array, A[2..n], defined by positions 2…n, then, A[3..n], defined on
positions 3..n and so on.
 What is the best loop invariant for the outer loop? First find the loop invariant for the inner loop
(lines 3-7) and then use this to find the invariant of the outer loop (lines 1-11).

2009 November 23 Assertion & Verification Example Test Questions Page 3 of 8

 Explain how the loop invariant can be used to prove the correctness of the main loop (lines 1-11)?
(Hint: what is the relationship between A[1..k] and A[k+1..n] after kth iteration of the main loop?)

1 for i from 1 to n-1 do
2 small = i
3 for j from i+1 to n do
4 if A[j] < A[small] then
5 small = j
6 end if
7 end for
8 temp := A[small]
9 A[small] := A[i]
10 A[i] := temp
11 end for

13.

 What would be the best precondition, postcondition and loop invariant for the following correct
algorithm to find the longest string in an array of strings A[1..N]

s := null; longestIndex := 0
j := 1
while j <= N do
 if length(s) < A[j] then
 s := A[j]; longestIndex := j
 end-if

end-while

14.

 Give, both in English and in mathematical notation, the best precondition, postcondition, loop invariant
and loop variant for the following algorithm to search the array a[lb .. ub] for the position of the
value key. The Eiffel notation "a @ j" is equivalent to "a[j]" in Java/C++/C.

search(a : ARRAY[ITEM]; key : ITEM) : INTEGER is
 require ???
 local j, n : INTEGER
 do
 from j := a.upperbound ; Result := a.lowerbound – 1
 invariant ???
 variant ???
 until j = Result
 loop
 if a @ j = key then Result := j
 else j := j – 1
 end
 end
 ensure ???
end

15.

 The following code segment computes the square of n

square := 0
increment := 1
for i:= 1 to n do
 square := square + increment
 increment := increment + 2
end for

 A What are the best loop invariant and variant.

2009 November 23 Assertion & Verification Example Test Questions Page 4 of 8

 B Use the invariant and the variant from part A to argue the correctness of the loop.

 C Explain why an invariant such as "i >= 1" is not of much value

16.

 The greatest common divisor (GCD) of two positive integers, a and b, denoted by GCD(a, b) is the
largest natural number that divides both a and b. Some examples include GCD(9,6) = 3, GCD(16, 5) =
1. Euclid’s algorithm computes the GCD of two numbers as follows

Step A: Write a = q *b + r where 0 <= r <= b.
Step B: If r > 0, then set a = b, b = r and go to Step A. Otherwise last b is the GCD

The equation . a = q *b + r implies that GCD(a, b) = GCD(b, r) and hence the process works.
Here are several iterations:

a = q1*b + r1 where 0 <= r1 <= b
b = q2*r1 + r2 where 0 <= r2 < r1
r1 = q3*r2 + r3 where 0 <= r3 < r2

Complete require, ensure, variant and invariant clauses for the gcd method.
gcd (a, b: INTEGER): INTEGER is
 -- Greatest common divisor of a and b.
 require
 ???
 local
 x, y, remainder: INTEGER
 do
 from
 x := a
 y := b
 remainder := x \\ y -- remainder of x divided by y
 invariant
 ???
 variant
 ???
 until
 remainder = 0
 loop
 x := y
 y := remainder
 remainder := x \\ y
 end
 Result := y
 ensure
 ???
end

17.
Verify that the following algorithm to partition an array, a[1 .. N], into those elements that are
smaller than a[1] and those that are larger than a[1] is correct.

 Array on exit elements of a < old a[1] old a[1] elements of a > old a[1]

partition(a : ARRAY[INTEGER]): INTEGER is
 require a.lower_bound ≤ 1 ∧ a.upper_bound ≥ 1
 ∀ i : 2 .. a.upper_bound • a[1] ≠ a[i]
 local split, last : INTEGER
 do
 from split := 1 ; last := 2

2009 November 23 Assertion & Verification Example Test Questions Page 5 of 8

 invariant ∀ k : 2 .. split • a[k] < a[1] ∧ ∀ k : split+1 .. last-1 • a[k] > a[1]
 variant a.upperbound – last + 1
 until last > a.upper_bound do
 if a[last] < a[1] then split := split + 1
 swap(a[last], a[split])
 last := last + 1
 else last := last + 1
 end
 end
 swap(a[1], a[split])
 Result := split
 ensure a[Result] = old a[1]

 ∀ k : 1 .. Result-1 • a[k] < a[Result]
 ∀ k : Result+1 .. a.upper_bound • a[Result] < a[k]

 end

18.

 The following routine correctly computes 2n – 1 for a given integer n. Determine the loop
invariant and variant and write it in the space provided within the program text. Note that both
assertions have to be Eiffel executable.

pow_2 (n : INTEGER) : INTEGER is
 -- result is 2^n - 1
 require n >= 0
 local i, increment: INTEGER
 do
 from
 i := 0
 increment := 1
 Result := 0
 invariant ???
 variant ???
 until i >= n
 loop
 Result := Result + increment
 increment := increment * 2
 i := i + 1
 end
 ensure Result = 2 ^ n - 1
 end

19.
The following routine correctly computes the 2^n – 1 for a given integer n. 2^n is 2 to the power of n.
Prove the algorithm is correct.

pow_2 (n : INTEGER) : INTEGER is
 -- result is 2^n - 1
 require n >= 0
 local i, increment: INTEGER
 do
 from
 i := 0
 increment := 1
 Result := 0
 invariant Result = 2^i – 1 and increment = 2 ^ i

2009 November 23 Assertion & Verification Example Test Questions Page 6 of 8

 variant n - i

 until i >= n
 loop
 Result := Result + increment
 increment := increment * 2
 i := i + 1
 end
 ensure Result = 2 ^ n - 1
 end

20.
The following routine employs a loop to compute n*(n+1) for a given non-negative integer n. There
is, however, an error in its implementation. Your task is to use the given loop invariant and the variant
to prove the “correctness” of the loop. If you are careful with your proof, then the source of the error
should reveal itself at the proper step of the proof. Follow the normal course of proof until you reach
an inconsistency, then indicate what is the source of the error in the routine that gives the
inconsistency, correct it and complete the proof.

sum2 (n : INTEGER) : INTEGER is
 -- Compute n * (n + 1)
 require n >= 0
 local i : INTEGER
 do
 from i := 0
 invariant Result = i * (i + 1)
 variant n - i + 1
 until i > n
 loop
 i := i + 1
 Result := Result + 2 * i
 end
 ensure Result = n * (n + 1)
 end

21.
The following routine employs a loop to compute n^2 (n2) for a given non-negative integer n. Verify
the routine is correct. There is, however, an error in its implementation. Your task is to use the given
loop invariant and the variant to prove the “correctness” of the loop. If you are careful with your
proof, then the source of the error should reveal itself at the proper step of the proof. Follow the
normal course of proof until you reach an inconsistency, then indicate what is the source of the error in
the routine that gives the inconsistency, correct it and complete the proof.

square (n: INTEGER): INTEGER is
 -- result is n^2
 require n >= 0
 local i, increment: INTEGER
 do
 from i := 0 ; increment := -1
 invariant Result = i^2 and increment = 2*i - 1

2009 November 23 Assertion & Verification Example Test Questions Page 7 of 8

22. until i > n
 loop
 i := i + 1
 increment := 2 * i - 1
 Result := Result + increment
 end
 ensure Result = n ^ 2
 end

23.
Consider the following pseudo code, which implements the selection sort. It works by looking through
an array of n elements, A, picking the smallest element and moving it to the 1st position. It then,
repeats the same thing on the sub-array, A[2..n], defined by positions 2…n, then, A[3..n], defined on
positions 3..n and so on.

1 i := 1
2 while i <= n do {
3 small := i
4 j = i + 1
5 while j <= n do {
6 if A[j] < A[small] then small := j fi
7 j := j + 1
8 }
9 temp := A[small]
10 A[small] := A[i]
11 A[i] := temp
12 i := i + 1
13 }

A What is the best loop invariant for the inner loop (lines 5..8)?
B What is the best loop invariant for the outer loop (lines 2-13)?
C Use the inner loop invariant to show the correctness of the inner loop (lines 3..8).

24.
A positive integer n is said to be prime if it is only divisible by 1 and itself.

∀ i : INTEGER • i | n ⇒ (i = 1 ∨ i = n) where i | n is read as i divides n

The following Eiffel routine correctly tests if a given integer, n, is prime by verifying that none of the
integers 2, 3, …, floor(sqrt(n)) divides n. For this question you need to perform the following tasks.
a) Complete the postcondition for the function prime.
b) Write a proper loop invariant, using BON assertion language, and variant for the loop.
c) Use results of the previous two steps to prove the correctness of the loop.

 prime (n: INTEGER): BOOLEAN is
 -- Asserts that n a prime number
 local
 i : INTEGER -- Test divisor
 max : INTEGER -- Maximum integer to try
 do
 from
 i := 2
 max := floor (sqrt (n))
 Result := True
 until
 i > max or not Result
 loop

2009 November 23 Assertion & Verification Example Test Questions Page 8 of 8

 Result := not ((n \\ i) = 0) -- \\ is the mod function
 i := i + 1
 end
 ensure ???

 end

Loop invariant
Write the loop invariant, using BON assertion notation not Eiffel programming language, and loop
variant.
Loop variant ???

25.
The following algorithm multiplies two integers using addition. Prove the algorithm works correctly.
The more mathematically precise you are, the higher the grade.

Pre-condition: a ≠ 0 and b ≠ 0
Post-condition: z = abs(a*b) – abs is the absolute value, z > 0
Loop invariant: z + u*y = x*y

1 if a < 0 then x := –a else x := a
2 if b < 0 then y := -b else y := b
3 z := 0
4 u := x
5 repeat
6 z := z + y
7 u := u – 1
8 until u = 0

26.
Give, both in English and in mathematical notation, the best precondition, postcondition, loop invariant
and loop variant for the following algorithm to search the array a[lb .. ub] for the position of the
value key. The Eiffel notation "a @ j" is equivalent to "a[j]" in Java/C++/C.

search(a : ARRAY[ITEM]; key : ITEM) : INTEGER is
 require ???
 local j, n : INTEGER
 do
 from j := a.upperbound ; Result := a.lowerbound – 1
 invariant ???
 variant ???
 until j = Result
 loop
 if a @ j = key then Result := j
 else j := j – 1
 end
 end
 ensure ???
end

