
2009 November 23

Example Test Questions
for Eiffel and ADTs

1. Eiffel
1. Java distinguishes between the primitive types -- int, char, real, etc. -- and real objects. Eiffel does not

make this distinction. Explain how Eiffel can treat the primitive types as first class objects.

2. Eiffel has four mechanisms for adaptation. Describe and give an example of each one.

3. Describe, in execution order, the steps Eiffel follows in creating an Object.

4. Explain what is an expanded type and why expanded types are needed.

5. In order to implement a vector of similar objects in Eiffel, one could create a generic class
VECTOR[G]. In Java, one would have to use the class Vector (stores arbitrary objects). Explain the
benefits of the former approach, and the dangers of the latter.

6. Consider the following two classes:

It is illegal in Eiffel to do the following in the body of feature foo: s.bar := 0
Explain what is the rationale behind this restriction.

2. Agents & Tuples
1. Consider a priority queue PQ as a sequence consisting of items, each called item, each containing the

following fields.

< priority : INTEGER , time : INTEGER , data : ANY >

Larger integers indicate higher priority and later arrival time.

Mathematically, the weakest class invariant that describes such a priority queue is the following.

∀ j, k : 1.. #PQ | j < k • item[j].priority > item[k].priority (# means length of).
 or (item[j].priority = item[k].priority
 and item[j].time < item[k].time)

You are given the following agent.

valid_pair (item_j : Q_ITEM[STRING]
 ; item_k : Q_ITEM[STRING]) : BOOLEAN is

-- Returns true if and only if it is valid that item_j be closer to the front of the queue

class CLIENT

feature
 s : SUPPLIER

 foo is
 do
 …
 end

end

class SUPPLIER

feature

 bar: INTEGER

 -- Other features…

end

2003 October 7 Software Design Eiffel and ADT Test Questions Page 2 of 3

-- than item_k.
 do
 Result := (item_j.priority > item_k.priority)
 or (item_j.priority = item_k.priority
 and
 item_j.time < item_k.time)
 end

A Define and explain the signature, in Eiffel syntax, for the function forall that would enable a
client to pass the agent valid_pair to verify the correctness of the preceding invariant.

B Give the calling sequence a client of the priority queue would use to invoke the function forall;
assume it is a feature in the priority class queue that is exported to all.

C Now give the implementation body for the function forall that matches your signature.

2. For the following question you need to write assertions and then implements them using agents in
Eiffel. You need to complete the code for for_all. Here is exactly what needs to be done:
 a) write, in English, what the sort feature need to ensure.
 b) Implement what contract, written in part a, using Eiffel agents.
 c) Complete the body of for_all.
 d) Implement agents that are needed for part b.

class
 SORTED_ARRAY
create
 make
feature

 a: ARRAY [INTEGER]

 make is
 -- example only
 do
 create a.make (1, 6)
 a := <<2, 4, 6, 6, 8, 5>>
 end

 sort is
 -- Sort array ‘a’ in non-decreasing order
 require
 v /= void
 do
 deferred
 ensure
 ???
 end

 for_all (low, up: INTEGER;
 test: FUNCTION [ANY, TUPLE [INTEGER], BOOLEAN])
 : BOOLEAN is
 -- Is "test(a @ i)" true for all i, low <= i <= up
 local
 i: INTEGER
 do
 from
 ???
 until
 ???
 loop
 ???
 end

2003 October 7 Software Design Eiffel and ADT Test Questions Page 3 of 3

 ???
 end

 -- Write the auxiliary routines needed to implement the
 -- contracts in the space below:
 ???

end -- class SORTED_ARRAY

3. ADTs and Classes
1. Describe the relationship between an abstract data type and a class.

2. Describe the basic steps in getting a class from an abstract data type.

3. Consider a priority queue PQ as a sequence consisting of items, each called item, each containing the
following fields.

< priority : INTEGER , time : INTEGER , data : ANY >

Larger integers indicate higher priority and later arrival time. Time increases indefinitely

A. Mathematically, give the weakest class invariant that describes such a priority queue.

B. Mathematically, give a class invariant that describes such a priority queue and also captures the
notion of a priority queue as consisting of a sequence of sub-sequences of the same priority.

4. Describe the relationship between an abstract data type and a class.

5. Describe various ways that are used to find classes.

6. Describe various issues pertaining to designing classes.

