CSE 6412 – Data Mining Research Paper Presentation

Opinion Mining in Comparative Sentences

by Murthy Ganapathibhotla, Bing Liu (2008)

Presenter: Nadine Dulisch

- 1. Introduction
- 2. Problem Definition
- 3. Proposed Technique
- 4. Identifying Preferred Entities: The Algorithm
- 5. Evaluation

• Objective:

Mining opinions from comparative sentences, i.e. which entities in a comparison are prefered by its author

- Distinction to direct opinion sentences:
 - "the picture quality of Camera X is great"
 - "the picture quality of Camera X is better than that of Camera Y"
 - 2 entities compared (Camera X, Camera Y)
 - Shared features or attributes (picture quality)
 - About 10% of sentences are comparisons (of user generated content)

- Jindal and Liu (2006) proposed technique to identify comparative sentences
 - Extract entities, comparative words, entity features
 - "Camera X has a longer battery life than Camera Y"
 - Entities: Camera X, Camera Y
 - Comparative word: longer
 - Feature: battery life
 - Doesn't determine, which entity is preferred
 - Objective of this paper

- Basic information unit: sentence
- Sentences usually contain
 - a comparative word (better, worse, -er word) or
 - a superlative word (best, worst, -est word) (here: "comparative word" used for both)
- Entities often appear on both sides of a comparative word
- Preferred entity mainly determined by comparative word

- Opinionated comparative words:
 - Explicitely indicate user preferences (better, worse, best)
 - "the picture quality of Camera X is **better** than that of Camera Y"
- Context-dependent opinion comparatives:
 - Not opinionated comparative words; opinion orientations depend on context or application domain
 - "longer" in itself is not opinionated (length of a feature of an entity is greater than the length of the same feature of another entity)
 - can be a desired or undesired state (e.g. camera: longer battery life (positive), program: longer execution time (negative))
 - => implicit opinion

CSE 6412 Data Mining

- Opinionated comparative words usually easy to handle
- Problem: How to identify opinion orientations?
 - 1) What is the context?
 - the whole sentence (but that's too complex)
 - Smallest context, that can determine the orientation:
 - Entity features being compared
 - comparative word

2) How to use the context to determine the orientation?

- External information/knowledge needed
 - For this paper: Customer reviews on the web (epinions.com)
 - Seperated pros and cons (so positive and negative opinions are known)
 - Drawback: pros and cons seldom contain comparative words

=> compute whether the comparative word and the feature are more associated in Pros than Cons

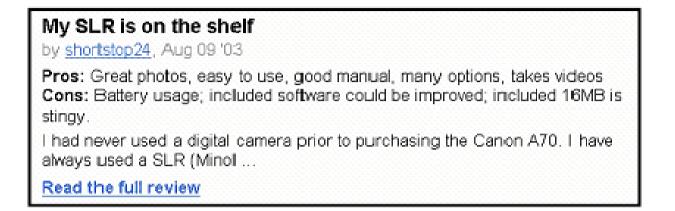
- Entity
 - An entity is the name of a person, a product, a company, a location, etc, under comparison in a comparative sentence.
- Feature
 - A feature is a part or attribute of the entity that is being compared.
- "Camera X's battery life is longer than that of Camera Y"
 - Entities: "Camera X" and "Camera Y"
 - Feature: "battery life"

- Types of comparatives:
 - Non-equal gradable
 - Relations that express **total ordering** of some entities with regard to their shared features ("Camera X's battery life is longer than that of Camera Y")
 - Equative
 - Relations that state 2 objects as equal with respect to some features ("Camera X and Camera Y are about the same size")
 - Superlative
 - Relations that rank one object over all others ("Camera X's battery life is the longest")
 - Non-gradable
 - Sentences, which compare features of two or more entities, but don't explecitely grade them ("Camera X and Camera Y have different features")

- Comparative Relation
 - <ComparativeWord, Features, EntityS1, EntityS2, Type>
 - ComparativeWord: Keyword to express comparative relation in the sentence
 - Features: Set of features being compared
 - EntityS1, EntityS2: Sets of entities being compared
 - Type: non-equal gradable, equative, superlative
 - Example:
 - "Camera X has longer battery life than Camera Y"
 - <longer, {battery life}, {Camera X}, {Camera Y}, non-equal gradable>

- Assumption
 - The work in (Jindal and Liu 2006) has extracted the comparative relation from a comparative sentence
- Objective
 - Given the extracted relation, identify whether the entities in EntityS1 or EntityS2 are preferred by the author

- Comparatives and superlatives special forms of adjectives and adverbs
 - Regular comparatives
 - Type 1 comparatives (and superlatives)
 - suffixes "-er", "-est"
 - Type 2 comparatives
 - Adjectives and adverbs with 2 or more syllables
 - Formed with "more", "most", "less", "least" (e.g. more beautiful)
 - Irregular comparatives
 - More, most, less, least, better, best, worse, worst, further/farther, furthest/farthest
 - Grouped under Type 1, because they behave similarly


- Non-standard words that express gradable comparisons
 - Prefer, superior
 - "in term of battery life, Camera X is superior to Camera Y" => Camera X is preferred
 - Grouped under Type 1, since they behave similarly
 - For this paper, list of 27 words obtained from (Jindal and Liu 2006)

- Categories of comparatives in regards to increasing/decreasing value
 - Increasing comparatives
 - Expresses an increased value of quantity (more, longer)
 - Decreasing comparatives
 - Expresses a decreased value of quantity (less, fewer)
- Categories of comparatives in regards to whether they carry positive or negative sentiments/opinions
 - Opinionated comparatives
 - Type 1: better, worse (explicit opinion)

- Type 2: more, less, most, least added; opinion determined by both words
 - "increasing comparative" Negative \rightarrow Negative Opinion
 - "increasing comparative" Positive \rightarrow Positive Opinion
 - "decreasing comparative" Negative \rightarrow Positive Opinion
 - "decreasing comparative" Positive \rightarrow Negative Opinion
- Comparatives with context-dependent opinions
 - Used to compare gradable quantities of entities (e.g. Type 1: higher, lower)
 - "Car X has higher mileage per gallon than Car Y"
 - Domain knowledge needed to know, whether higher is positive or negative
 - Type 2: similar to rules above (comparative word (more, less), adjective/adverb and feature important)

- Approach in this work
 - Usage of opinion word list from (Hu and Liu 2004)
 - For opinionated comparatives, conversion of adjectives/adverbs (in the list) to their comparative forms
 - automatically, based on grammar rules and WordNet (large lexical database of English)
 - if a word is positive, then also their comparative/superlativ form
 - Manual categorization into increasing and decreasing comparatives

- Conjecture: context formed by comparative and feature
- For type 2 comparatives: feature and adjective/adverb
 - "Program X runs more quickly than Program Y"
 - ("run", "quickly")
 - If positive (based on external information)
 =>conclusion that "Program X" is preferred (since "more" is an increasing comparative)
- Contexts used to find opinion orientations of comparatives

- Each phrase/sentence segment usually contains an entity feature and an opinion word
- User opinion on feature is clear (positive, negative)
- Separation using punctionation and words (e.g. and, but)

great photos
easy to use
good manual
many options
takes videos

<photo> <use> <manual> <option> <video>

- Preparatory work:
 - Usage of Pros and Cons to determine whether a comparative/entity feature combination is positiv or negativ
 - Comparatives seldom used in Pros and Cons
 - To find comperatives and entity features, convert comparatives to their base form (automatically with WordNet and grammar rules)
- Putting everything together to identify the preferred entity:
 - C = comparative word, F = feature
 - 2 main cases for the 2 types of comparatives (Type 1: suffixes "-er", "-est", etc; Type 2: formed with "more", "less", etc.)

November 29, 2011

- Case 1: Type 1 Comperative or Superlative
- 4 sub-cases

1.A.) C is opinionated

- If C has positive orientation then preferred entity = EntityS1 else preferred entity = EntityS2
- Assignment is temporarily, because sentence may contain negations (e.g. "not")

1.B.) C is not opinionated, but F is opinionated

- "Car X generates more noise than Car Y"
- "noise" is a negative noun
- If orientation of F = positiv and C is increasing comparative word then preferred entity = EntityS1 else

```
preferred entity = EntityS2
```

• All possibilities/rules:

"increasing C" + Positive \rightarrow EntityS1 preferred "decreasing C" + Positive \rightarrow EntityS2 preferred "increasing C" + Negative \rightarrow EntityS2 preferred "decreasing C" + Negative \rightarrow EntityS1 preferred

1.C.) Both F and C are not opinionated

- External information needed (Pros and Cons from Reviews)
- Look for F and C in (i.e. the context) in list of phrases in Pros and Cons
- Find whether combination is positive or negative
 - Compute their associations in Pros and Cons
 - If more associated in Pros than Cons => positive sentiment
- Association measures:
 - Point-wise mutual information (PMI)
 - One-side association (OSA) (proposed in this paper)

• PMI

$$PMI(F,C) = \log \frac{Pr(F,C)}{Pr(F)Pr(C)}.$$

- Commonly used for computing association of 2 terms
- Not suitable for this problem
 - PMI is symmetric (PMI(F,C) = PMI(C, F))
 - F and C not symmetric
 - Feature usually modified by particular adjective word
 - But the adjective word can modify several features (long battery life, long execution time)
 - => probability of C given F (Pr(C | F)), confidence in data mining
 - Not suitable when C occurs frequently and F rarely (high probability may just represent pure chance, association may be spurious)

- => OSA November 29, 2011

CSE 6412 Data Mining

• OSA

$$OSA(F,C) = \log \frac{Pr(F,C)Pr(C|F)}{Pr(F)Pr(C)}$$

- Pr(C | F) biases the mutual association of F and C to one side
- Computation for positive and negative $(OSA_{P}(F, C); OSA_{N}(F, C))$
- Decision Rule:

- Computing OSA_P(F, C)
 - For C additionally use base form, synonyms, antonyms (obtained from WordNet, currently only single word features); for F additionally use synonyms
 - Pr_P(F, C)
 - + 1 for every time, C and F co-occur in Pros phrase
 - + 1 for every time, if antonym of C and F co-occur in a Cons phrase
 - Usage of both Pros and Cons allows to find more occurances (to produce more reliable results)
 - Pr_P(F); Pr_P(C)
 - C: synonyms in Pros, antonyms in Cons considered
 - F: synonyms in Pros and Cons
- Computing $OSA_{N}(F, C)$ accordingly

1.D.) C is a feature indicator

- The feature doesn't appear explicitely in the sentence, but is implied
- Words that imply the feature = feature indicator
- "Camera X is smaller than Camera Y"
- "smaller" feature indicator for feature "size"
- # of times C occurs in Pros/Cons (n+/n-)

```
    If n+ ≥ n- then
EntityS1 preferred
else
EntityS2 preferred
```

- Case 2: Type 2 Comperative or Superlative
- 2 sub-cases

2.A.) Adjective/adverb in the comparison is opinionated

- In this case, feature F is not important
- "Car X has more beautiful interior than Car Y"
- more = increasing comparative, beautiful = adjective with positive orientation, (interior = feature)
- Car X clearly preferred
- Handled similar to 1.B. (C is not opinionated, bug F is opinionated)

2.B.) Adjective/adverb in the comparison is not opinionated

- If adjective is a feature indicator => handled according to 1.D.
- Otherwise, form context using the feature and the adjective/adverb => handled according to 1.C.
- Result combined with comparative word before the adjective to decide based on rules in 1.B

• Negations:

- The other entity is preferred
- Can be problematic ("not longer" doesn't mean "shorter")

- System PCS (Preferred entities in Comparative Sentences) has been implemented
 - No system to compare with exists
- Evaluation Datasets
 - Consists of 2 subsets
 - (Jindal and Liu 2006): product review and forum discussion sentences (digital cameras, DVD players, Intel vs AMD, etc)
 - Self collected data: forum discussion data about mobile phones and reviews from amazon.com and cnet.com
 - 837 comparative sentences, collected from thousands of sentences (about 10 % comparative sentences)
 - 84% of comparative sentences had EntityS1 as preferred entity => people tend to put the preferred entity first
- Each 15162 Pros and Cons extracted (epinions.com) November 29, 2011 CSE 6412 Data Mining

- Results
 - If just EntityS1 is anounced as preferred entity: 84% accuracy
 - PCS using OSA measure: 94.4% accuracy
 - Mainly precision, recall and F-score used for evaluation
 - Better results if EntityS1 is preferred
 - Observation: sentences tend to be more complex, if EntityS2 is preferred
 - Comparison without the use of Pros and Cons:
 - When context dependency handling is required, take majority as default (EntityS1)
 - Precision improvement of PCS statistically significant at 95% confidence level

- Looking at the 187 sentences, that need dependency handling
 - 72.2% have EntityS1 as preferred entity
 - PCS reaches 89.6% precision for EntityS1 as preferred entity (69.6% for EntityS2)
- OSA vs PMI
 - OSA better in F-score (1.2% for EntityS1, 2% for EntityS2)
 - OSA gains for whole dataset are less, because number of sentences that need context dependency handling is small (22%)

Thank you for your attention.

Any Questions?