Link-State and Distance Vector Routing Examples

CPSC 441 University of Calgary

Link-State (LS) Routing Algorithm

Dijkstra's algorithm

- topology and link costs known to all nodes
 - accomplished via "link state broadcast"
 - all nodes have same info
- computes least cost paths from one node (source) to all other nodes
 - gives forwarding table for that node
- iterative: after k iterations, know least cost path to k destination nodes

Notation:

- c(x,y): link cost from node x to y; set to ∞ if a and y are not direct neighbors
- D(v): current value of cost of path from source to dest. v
- p(v): v's predecessor node along path from source to v
- N': set of nodes whose least cost path is definitively known

Dijsktra's Algorithm

- 1 *Initialization (u = source node):*
- 2 N' = {u} /* path to self is all we know */
- 3 for all nodes v
- 4 if v adjacent to u
- 5 then D(v) = c(u,v) /* assign link cost to neighbours */
- 6 else D(v) = ∞

```
7
```

8 Loop

- 9 find w not in N' such that D(w) is a minimum
- 10 add w to N'
- 11 update D(v) for all v adjacent to w and not in N':
- 12 D(v) = min(D(v), D(w) + c(w,v))
- 13 /* new cost to v is either old cost to v or known
- 14 shortest path cost to w plus cost from w to v */

15 until all nodes in N'

Step	N '	D(s),p(s)	D(t),p(t)	D(u),p(u)	D(v),p(v)	D(w),p(w)	D(y),p(y)	D(z),p(z)
0	X	∞	∞	∞	3,x	1,x	6,x	∞

Initialization:

- Store source node x in N'
- Assign link cost to neighbours (v,w,y)
- Keep track of predecessor to destination node

Node and its minimum cost are colour-coded in each step

Step	N'	D(s),p(s)	D(t),p(t)	D(u),p(u)	D(v),p(v)	D(w),p(w)	D(y),p(y)	D(z),p(z)
0	X	∞	∞	∞	3,x	1 ,x	6,x	∞
1	XW	∞	∞	4,w	2,w		6,x	∞

Loop – step 1:

- For all nodes not in N', find one that has minimum cost path (1)
- Add this node (w) to N'

- Update cost for all neighbours of added node that are not in N' repeat until all nodes are in N'

Node and its minimum cost are colour-coded in each step

Step	N'	D(s),p(s)	D(t),p(t)	D(u),p(u)	D(v),p(v)	D(w),p(w)	D(y),p(y)	D(z),p(z)
0	X	∞	∞	∞	3,x	1 ,x	6,x	∞
1	XW	∞	∞	4,w	<mark>2</mark> ,w		6,x	∞
2	XWV	∞	11,v	<mark>3</mark> ,v			3,v	∞
3	XWVU	7,u	5,u				3,v	∞
4	xwvuy	7,u	5,u					17,y
5	xwvuyt	6,t						7,t
6	xwvuyts							7,t

We can now build x's forwarding table. E.g. the entry to s will be constructed by looking at predecessors along shortest path: $6,t \rightarrow 5,u$ $\rightarrow 3,v \rightarrow 2,w$ (direct link) So forward to s via w

Step	N'	D(s),p(s)	D(t),p(t)	D(u),p(u)	D(v),p(v)	D(w),p(w)	D(y),p(y)	D(z),p(z)
0	X	∞	∞	∞	3,x	<mark>1</mark> ,x	6,x	∞
1	XW	∞	∞	4,w	<mark>2</mark> ,w		6,x	∞
2	XWV	∞	11,v	<mark>3</mark> ,v			3,v	∞
3	xwvu	7,u	5,u				3,v	∞
4	xwvuy	7,u	5,u					17,y
5	xwvuyt	6,t						7,t
6	xwvuyts							7,t

Distance Vector Routing

- Based on Bellman-Ford Equation
- Define
 - $d_x(y) := cost of least-cost path from x to y$
 - c(x,v) := cost of direct link from x to v
- Then, for all v that are neighbours of x

Bellman-Ford Equation Example

Consider a path from *u* to *z* By inspection, $d_v(z) = 5$, $d_x(z) = 3$, $d_w(z) = 3$

B-F equation says:

$$d_{u}(z) = \min \{ c(u,v) + d_{v}(z), \\ c(u,x) + d_{x}(z), \\ c(u,w) + d_{w}(z) \} \\ = \min \{ 2 + 5, \\ 1 + 3, \\ 5 + 3 \} = 4$$

Node that achieves minimum is next hop in shortest path → entry in forwarding table

Distance Vector Algorithm

Basic idea:

- Nodes keep vector (DV) of least costs to other nodes
 These are estimates, D_x(y)
- Each node periodically sends its own DV to neighbors
- When node x receives DV from neighbor, it keeps it and updates its own DV using B-F:
 D_x(y) ← min_v{c(x,v) + D_v(y)}

for each node y ϵ N

 Ideally, the estimate D_x(y) converges to the actual least cost d_x(y)

In similar fashion, algorithm proceeds until all nodes have updated tables

<u>node x table</u>

Distance Vector: link cost changes

Link cost changes:

- node detects local link cost change
- updates routing info, recalculates distance vector

if DV changes, notify neighbors

> At time t_0 , y detects the link-cost change, updates its DV, and informs its neighbors.

"good

news

fast"

At time t_1 , z receives the update from y and updates its table. It computes a new least cost to x and sends neighbors its DV. travels

> At time t_2 , y receives z's update and updates its distance table. y's least costs do not change and hence y does not send any message to z.

Distance Vector: link cost changes

Link cost changes:

- bad news travels slow "count to infinity" problem!
- When y detects cost change to 60, it will update its DV using the z's cost to x, which is 5 (via y), to obtain an incorrect new cost to x of 6, over the path y→z→y→x that has a loop

 44 iterations before algorithm stabilizes, while y and z exchange updates

Poisoned reverse:

- If Z routes through Y to get to X :
 - Z tells Y its (Z's) distance to X is infinite (so Y won't route to X via Z)
- Will this completely solve the problem?