Link-State and Distance
Vector Routing Examples

CPSC 441
University of Calgary

Link-State (L.S) Routing Algorithm

Dijkstra’s algorithm

topology and link costs
known to all nodes

o accomplished via “link
state broadcast”

o all nodes have same info

computes least cost paths
from one node (source) to all
other nodes

a gives forwarding table for
that node

iterative: after k iterations,
know least cost path to k
destination nodes

Notation:

c(x,y): link cost from node x
toy;, setto« ifaandy are
not direct neighbors

D(v): current value of cost of
path from source to dest. v

p(v): v's predecessor node
along path from source to v

N': set of nodes whose least
cost path is definitively
known

Dijsktra’s Algorithm

1 Initialization (u = source node):

2 N ={u} [* path to self is all we know */

3 for all nodes v

4 if vadjacent to u

5 then D(v) = c(u,v) /* assign link cost to neighbours */
6 elseD(v)=

.
8 Loop

9 find wnot in N' such that D(w) is a minimum
10 add wto N’

11 update D(v) for all v adjacent to w and not in N':
12 D(v) = min(D(v), D(w) + c(w,V))

13 /* new cost to v is either old cost to v or known
14 shortest path cost to w plus cost from w to v */

US until all nodes in N’

Textbook — Problem 4.21 — x 1s source

Step N D(s)p(s) D(t)p(t) D(u)p(u) D(v)p(v) D(w)p(w) D(y).ply) D(z)p(z)
0 X 00 00 00 3,x 1,x 6,x o0
Initialization:

- Store source node x in N’
- Assign link cost to neighbours (v,w,y)
- Keep track of predecessor to destination node

Textbook — Problem 4.21 — x 1s source

Node and its minimum cost
are colour-coded in each

step
Step N D(s)p(s) D(t)p(t) D(u).p(u) D(v)p(v) D(w)p(w) D(y)p(y) D(z)p(z)
0 X 00 00 00 3,x 1,x 6,x o0
1 XW 00 00 4w 2w 6,x 0

Loop — step 1:
- For all nodes not in N’, find one that has minimum cost path (1)

- Add this node (w) to N’
- Update cost for all neighbours of added node that are not in N’

repeat until all nodes are in N’

Textbook — Problem 4.21 — x 1s source

Node and its minimum cost
are colour-coded in each

step

Step N D(s)p(s) D(t).p() D(u)p(u) D(v)p(v) D(w),p(w) Dfy)p(y) D(z).p(z)
0 X 00 00 00 3,x 1,x 6,x o0

1 XwW 00 00 4w 2,W 6,x 00

2 XWV 00 11,v V 3,v 00

3 XWV 7,u Su 3,v 00

4 xwvuy 7,u 5,u 17y

5 xwvuyt 6.t 1t

6 Xxwvuyts (A

Textbook — Problem 4.21 — x 1s source

We can now build x's
forwarding table. E.g. the
entry to s will be
constructed by looking at
predecessors along
shortest path: 6,t > 5,u
—->3,v 2 2,w (direct link)
So forward to s via w

Step N D(s)p(s) D(t).p() D(u)p(u) D(v)p(v) D(w),p(w) Dfy)p(y) D(z).p(z)
0 X 00 00 00 3,x 1,x 6,x o0

1 XwW 00 00 4w 2,W 6,x 00

2 XWV 00 11,v V 3,v 00

3 XWV 7,u Su 3,v 00

4 xwvuy 7,u 5,u 17y

5 xwvuyt 6.t 1t

6 Xxwvuyts (A

Distance Vector Routing

= Based on Bellman-Ford Equation

= Define
d,(y) := cost of least-cost path from xto y
c(X,V) = cost of direct link from x to v

= Then, for all v that are neighbours of x

d,(y) = min, {c(x,v) + d,(y) }

‘ Bellman-Ford Equation Example

Consider a path from uto z
By inspection, d(z) = 5, d,(z) =3, d(z) =3

B-F equation says:

dy(z) = min { c(u,v) + d,(2),
c(u,x) + d,(2),
c(uw) + dy(2) }

=min {2 + 5,
1+ 3,
5+3} =4

Node that achieves minimum is next
hop in shortest path = entry in forwarding table

Distance Vector Algorithm

Basic idea:

Nodes keep vector (DV) of
least costs to other nodes

a These are estimates, D,(y)

Each node periodically sends
Its own DV to neighbors

When node x receives DV from
neighbor, it keeps it and
updates its own DV using B-F:

D,(y) < min,{c(x,v) + D,(y)}
foreach nodey € N

|deally, the estimate

d,(Y)

On each node:

_ }
walt for (change in local link

cost or msg from neighbor)

|

recompute estimates

|

if DV has changed, notify
neighbors

10

node x table
cost to

from
N < X

node y ’rablceos f to

Xy z

oo OO

Step 1: Initialization
Initialize costs of direct links

(o e]

X
Y
y

from

cO o0 OO

node z table
cost to

Xy z

Set to « costs from neighbours

O OO OO

from
Nl~< X

» time

11

D,(y) = min{c(x,y) + D,(y), c(x,z) + D,(y)} .
= min{2+0 , 7+1} = 2 D,(z)=min{c(x,y)+D,(2), c(x,2)+D,(2)}
= min{2+1, 7+0} =3

node x table

cost to cost to
Xy Z y Z
c X|02 7 c x(0 2 3
© Y| oo S vyl2 01
T Zloww o 22710
node y ’rablceos f to
Xy z Step 2: Exchange DV and
iterate 2 1
= X|oo ® -In first iteration, node x saves
s Y2 01 neighbours’ DVs =
* Z]l oo o -Then, it checks path costs to
node z table all nodes using received DVs
cost to -E.g. new cost D.(2) is
XYy Z obtained by adding costs
o0 0o 0 marked red

from
N|~< X
8
8
8

» time 12

In similar fashion, algorithm proceeds until all nodes have updated tables

node x table

cost to

from
N < X

node y table

cO o0 OO

cost to
XYy z

from

X
Y
y

node z table

oo OO
(o e]

cO o0 OO

cost to
X Yy Z

from
Nl~< X

O OO OO

£
®)
-
Yy—

cost to
XYy zZ

02 3

2 01
310

cost to
XYy z

from

02 3

20 1
310

13

Distance Vector: link cost changes

Link cost changes: 1

node detects local link cost change {
updates routing info, recalculates
distance vector 90

If DV changes, notify neighbors

At time 7,, y detects the link-cost change, updates its DV,
W and informs its neighbors.

good
news At time 7, zreceives the update from y and updates its table.
travels It computes anew least cost to x and sends neighbors its DV.

"
fast At time 7,, yreceives Zs update and updates its distance table.

y's least costs do not change and hence y does not send any
message to z

14

Distance Vector: link cost changes

Link cost changes:

bad news travels slow - “count to infinity”
problem!
60

When y detects cost change to 60, it will
update its DV using the z’s cost to x, which ?_/l I El
IS 5 (via y), to obtain an incorrect new cost

to x of 6, over the path y=>z->y->x that has 2L
a loop

44 iterations before algorithm stabilizes,
while y and z exchange updates
Poisoned reverse:

If Z routes through Y to getto X :

o Ztells Y its (Z’s) distance to X is infinite (so Y
won’t route to X via Z)

Will this completely solve the problem?

