
Link-State and Distance
Vector Routing Examples

CPSC 441
University of Calgary

2

Link-State (LS) Routing Algorithm
Dijkstra’s algorithm

� topology and link costs
known to all nodes

� accomplished via “link
state broadcast”

� all nodes have same info

� computes least cost paths
from one node (source) to all
other nodes

� gives forwarding table for
that node

� iterative: after k iterations,
know least cost path to k
destination nodes

Notation:

� c(x,y): link cost from node x
to y; set to ∞ if a and y are
not direct neighbors

� D(v): current value of cost of
path from source to dest. v

� p(v): v’s predecessor node
along path from source to v

� N': set of nodes whose least
cost path is definitively
known

3

Dijsktra’s Algorithm
1 Initialization (u = source node):
2 N' = {u} /* path to self is all we know */
3 for all nodes v
4 if v adjacent to u
5 then D(v) = c(u,v) /* assign link cost to neighbours */
6 else D(v) = ∞
7
8 Loop
9 find w not in N' such that D(w) is a minimum
10 add w to N'
11 update D(v) for all v adjacent to w and not in N' :
12 D(v) = min(D(v), D(w) + c(w,v))
13 /* new cost to v is either old cost to v or known
14 shortest path cost to w plus cost from w to v */
15 until all nodes in N'

4

Textbook – Problem 4.21 – x is source

∞6,x1,x3,x∞∞∞x0
D(z),p(z)D(y),p(y)D(w),p(w)D(v),p(v)D(u),p(u)D(t),p(t)D(s),p(s) N’Step

w

t

s3
9

1
3

2

4

1
4

2

11

14

6
1

y

x
v

u

z

Initialization:
- Store source node x in N’
- Assign link cost to neighbours (v,w,y)
- Keep track of predecessor to destination node

5

Textbook – Problem 4.21 – x is source

∞6,x2,w4,w∞∞xw1
∞6,x1,x3,x∞∞∞x0
D(z),p(z)D(y),p(y)D(w),p(w)D(v),p(v)D(u),p(u)D(t),p(t)D(s),p(s) N’Step

w

t

s3
9

1
3

2

4

1
4

2

11

14

6
1

y

x
v

u

z
Node and its minimum cost
are colour-coded in each
step

Loop – step 1:
- For all nodes not in N’, find one that has minimum cost path (1)
- Add this node (w) to N’
- Update cost for all neighbours of added node that are not in N’
repeat until all nodes are in N’

6

Textbook – Problem 4.21 – x is source

7,txwvuyts6
7,t6,txwvuyt5
17,y5,u7,uxwvuy4
∞3,v5,u7,uxwvu3
∞3,v3,v11,v∞xwv2
∞6,x2,w4,w∞∞xw1
∞6,x1,x3,x∞∞∞x0
D(z),p(z)D(y),p(y)D(w),p(w)D(v),p(v)D(u),p(u)D(t),p(t)D(s),p(s) N’Step

w

t

s3
9

1
3

2

4

1
4

2

11

14

6
1

y

x
v

u

z
Node and its minimum cost
are colour-coded in each
step

7

Textbook – Problem 4.21 – x is source

7,txwvuyts6
7,t6,txwvuyt5
17,y5,u7,uxwvuy4
∞3,v5,u7,uxwvu3
∞3,v3,v11,v∞xwv2
∞6,x2,w4,w∞∞xw1
∞6,x1,x3,x∞∞∞x0
D(z),p(z)D(y),p(y)D(w),p(w)D(v),p(v)D(u),p(u)D(t),p(t)D(s),p(s) N’Step

w

t

s3
9

1
3

2

4

1
4

2

11

14

6
1

y

x
v

u

z
We can now build x’s
forwarding table. E.g. the
entry to s will be
constructed by looking at
predecessors along
shortest path: 6,t � 5,u
�3,v � 2,w (direct link)
So forward to s via w

8

Distance Vector Routing
� Based on Bellman-Ford Equation
� Define

dx(y) := cost of least-cost path from x to y
c(x,v) := cost of direct link from x to v

� Then, for all v that are neighbours of x
dx(y) = minv {c(x,v) + dv(y) }

y
x

v
c(x,v)

dx(y)

dv(y)

9

Bellman-Ford Equation Example

u

yx

wv

z
2

2

1
3

1

1

2

5
3

5

Consider a path from u to z
By inspection, dv(z) = 5, dx(z) = 3, dw(z) = 3

du(z) = min { c(u,v) + dv(z),
c(u,x) + dx(z),
c(u,w) + dw(z) }

= min {2 + 5,
1 + 3,
5 + 3} = 4

Node that achieves minimum is next
hop in shortest path ➜ entry in forwarding table

B-F equation says:

10

Distance Vector Algorithm
Basic idea:
� Nodes keep vector (DV) of

least costs to other nodes
� These are estimates, Dx(y)

� Each node periodically sends
its own DV to neighbors

� When node x receives DV from
neighbor, it keeps it and
updates its own DV using B-F:

Dx(y) ← minv{c(x,v) + Dv(y)}
for each node y � N

� Ideally, the estimate Dx(y)
converges to the actual least
cost dx(y)

On each node:

wait for (change in local link
cost or msg from neighbor)

recompute estimates

if DV has changed, notify
neighbors

11
7 1 0 time

x z
12

7

y

x y z
x
y
z

0 2 7
∞∞ ∞
∞∞ ∞fr

om
cost to

fr
om

fr
om

x y z
x
y
z

∞ ∞

∞∞ ∞

cost to

x y z
x
y
z ∞ ∞ ∞

cost to

∞
2 0 1

∞ ∞ ∞

node x table

node y table

node z table

Step 1: Initialization
Initialize costs of direct links

Set to ∞ costs from neighbours

12
7 1 0 time

x z
12

7

y

Dx(y) = min{c(x,y) + Dy(y), c(x,z) + Dz(y)}
= min{2+0 , 7+1} = 2 Dx(z)=min{c(x,y)+Dy(z), c(x,z)+Dz(z)}

= min{2+1 , 7+0} = 3

x y z
x
y
z

0 2 7
∞∞ ∞
∞∞ ∞fr

om
cost to

fr
om

fr
om

x y z
x
y
z

0 2 3

fr
om

cost to

x y z
x
y
z

∞ ∞

∞∞ ∞

cost to

x y z
x
y
z ∞ ∞ ∞

cost to

∞
2 0 1

∞ ∞ ∞

2 0 1
7 1 0

node x table

node y table

node z table

Step 2: Exchange DV and
iterate
-In first iteration, node x saves
neighbours’ DVs
-Then, it checks path costs to
all nodes using received DVs
-E.g. new cost Dx(z) is
obtained by adding costs
marked red

13
7 1 0 time

x z
12

7

y

In similar fashion, algorithm proceeds until all nodes have updated tables

x y z
x
y
z

0 2 7
∞∞ ∞
∞∞ ∞fr

om
cost to

fr
om

fr
om

x y z
x
y
z

0 2 3

fr
om

cost tox y z
x
y
z

0 2 3

fr
om

cost to

x y z
x
y
z

∞ ∞

∞∞ ∞

cost to
x y z

x
y
z

0 2 7

fr
om

cost to
x y z

x
y
z

0 2 3

fr
om

cost to

x y z
x
y
z

0 2 3
fr
om

cost to
x y z

x
y
z

0 2 7

fr
om

cost to
x y z

x
y
z ∞ ∞ ∞

cost to

∞
2 0 1

∞ ∞ ∞

2 0 1
7 1 0

2 0 1
7 1 0

2 0 1
3 1 0

2 0 1
3 1 0

2 0 1

3 1 0
2 0 1

3 1 0

node x table

node y table

node z table

14

Distance Vector: link cost changes
Link cost changes:
� node detects local link cost change
� updates routing info, recalculates

distance vector
� if DV changes, notify neighbors

“good
news
travels
fast”

x z
14

50

y
1

At time t0, y detects the link-cost change, updates its DV, and informs its neighbors.
At time t1, z receives the update from y and updates its table. It computes a new least cost to x and sends neighbors its DV.
At time t2, y receives z’s update and updates its distance table. y’s least costs do not change and hence y does not send any
message to z.

15

Distance Vector: link cost changes
Link cost changes:
� bad news travels slow - “count to infinity”

problem!

� When y detects cost change to 60, it will
update its DV using the z’s cost to x, which
is 5 (via y), to obtain an incorrect new cost
to x of 6, over the path y�z�y�x that has
a loop

� 44 iterations before algorithm stabilizes,
while y and z exchange updates

Poisoned reverse:
� If Z routes through Y to get to X :
� Z tells Y its (Z’s) distance to X is infinite (so Y

won’t route to X via Z)

� Will this completely solve the problem?

x z
14

50

y
60

