Math/CSE 1019:
 Discrete Mathematics for Computer Science

 Fall 2011
Suprakash Datta datta@cse.yorku.ca

Office: CSEB 3043
Phone: 416-736-2100 ext 77875

Course page: http://www.cse.yorku.ca/course/1019

Last class: proofs

Different techniques
Proofs vs counterexamples (connections with quantifiers)

Uniqueness proofs

- E.g. the equation $a x+b=0, a, b$ real, $a \neq 0$ has a unique solution.

The Use of Counterexamples

All prime numbers are odd

Every prime number can be written as the difference of two squares, i.e. $a^{2}-b^{2}$.

The role of conjectures

- 3x+1 conjecture

Game: Start from a given integer n . If n is even, replace n by $n / 2$. If n is odd, replace n with $3 n+1$. Keep doing this until you hit 1.
e.g. $\mathrm{n}=5 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1$

Q: Does this game terminate for all n ?

Elegance in proofs

Q: Prove that the only pair of positive integers satisfying $a+b=a b$ is $(2,2)$.

- Many different proofs exist. What is the simplest one you can think of?

More proof exercises

- If $n+1$ balls are distributed among n bins prove that at least one bin has more than 1 ball
- A game

Meaningful diagrams

- Pythagoras

Meaningful diagrams-2

- Sum of an arithmetic series (from http://www.tonydunford.com/images/math-and-geometry/sum-of-number-series/SumOfOdd.jpg)

Meaningful diagrams-3

- Sum of a geometric series (from http://math.rice.edu/~lanius/Lessons/Series/one.gif)

Meaningful diagrams-4

- $1 / 4+1 / 16+1 / 64+1 / 256+\ldots=1 / 3$ (from http://www.billthelizard.com/2009/07/six-visualproofs 25.html)

Next

Ch. 2: Introduction to Set Theory

- Set operations
- Functions
- Cardinality

Sets

- Unordered collection of elements, e.g.,
- Single digit integers
- \quad Nonnegative integers
- faces of a die
- sides of a coin
- \quad students enrolled in 1019N, W 2007.
- Equality of sets
- Note: Connection with data types

Describing sets

- English description
- Set builder notation

Note:
The elements of a set can be sets, pairs of elements, pairs of pairs, triples, ...!!

Cartesian product:
$A \times B=\{(a, b) \mid a \in A$ and $b \in B\}$

Sets of numbers

- Natural numbers
- Whole numbers
- Integers
- Rational numbers
- Real numbers
- Complex numbers
- Co-ordinates on the plane

Sets - continued

- Cardinality - number of (distinct) elements
- Finite set - cardinality some finite integer n
- Infinite set - a set that is not finite

Special sets

- Universal set
- Empty set ϕ (cardinality = ?)

Sets vs Sets of sets

- $\{1,2\}$ vs $\{\{1\},,\{2\}\}$
- $\}$ vs $\{\}\}=\{\phi\}$

Subsets

- $\mathrm{A} \subseteq \mathrm{B}: \forall \mathrm{x}(\mathrm{x} \in \mathrm{A} \rightarrow \mathrm{x} \in \mathrm{B})$

Theorem: For any set $\mathrm{S}, \phi \subseteq \mathrm{S}$ and $\mathrm{S} \subseteq \mathrm{S}$.

- Proper subset: $A \subset B: \forall x(x \in A \rightarrow x \in$ B) $\wedge \exists x(x \in B \wedge x \notin A)$
- Power set $P(S)$: set of all subsets of S.
- $P(S)$ includes S, ϕ.
- Tricky question - What is $\mathrm{P}(\phi)$?

$$
\begin{gathered}
P(\phi)=\{\phi\} \\
\text { Similarly, } P(\{\phi\})=\{\phi,\{\phi\}\}
\end{gathered}
$$

Set operations

- Union $-A \cup B=\{x \mid(x \in A) \vee(x \in B)\}$
- Intersection - $A \cap B=\{x \mid(x \in A) \wedge(x \in B)\}$

Disjoint sets - A, B are disjoint iff $A \cap B=\phi$

- Difference $-A-B=\{x \mid(x \in A) \wedge(x \notin B)\}$ Symmetric difference
- Complement $-A^{c}$ or $\bar{A}=\{x \mid x \notin A\}=U-A$
- Venn diagrams

Laws of set operations

- Page 130 - notice the similarities with the laws for Boolean operators
- Remember De Morgan's Laws and distributive laws.
- Proofs can be done with Venn diagrams.
E.g.: $(A \cap B)^{c}=A^{c} \cup B^{C}$

Proofs via membership tables (page 131)

Cartesian products

- $A \times B$

Introduction to functions

A function from A to B is an assignment of exactly one element of B to each element of A .
E.g.:

- Let $A=B=$ integers, $f(x)=x+10$
- Let $A=B=$ integers, $f(x)=x^{2}$

Not a function

- $A=B=$ real numbers $f(x)=\sqrt{ } x$
- $A=B=$ real numbers, $f(x)=1 / x$

Terminology

- $A=$ Domain, $B=$ Co-domain
- $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ (not "implies")
- range $(f)=\{y \mid \exists x \in A f(x)=y\} \subseteq B$
- int floor (float real) $\{\ldots\}$
- $f_{1}+f_{2}, f_{1} f_{2}$
- One-to-one INJECTIVE
- Onto SURJECTIVE
- One-to-one correspondence BIJECTIVE

Operations with functions

- Inverse $f^{-1}(x) \neq 1 / f(x)$
$f^{-1}(y)=x$ iff $f(x)=y$
- Composition: If f: $A \rightarrow B, g: C \rightarrow A$, then

$$
f^{\circ} g: C \rightarrow B, f^{\circ} g(x)=f(g(x))
$$

Graphs of functions

Special functions

- All domains: identity $\mathfrak{J}(x)$

Note: $\mathrm{f}^{\circ} \mathrm{f}-1=\mathrm{f}-1 \circ \mathrm{f}=\mathfrak{J}$

- Integers: floor, ceiling, DecimalToBinary, BinaryToDecimal
- Reals: exponential, log

Special functions

- DecimalToBinary, BinaryToDecimal
- E.g. $7=111_{2}, 1001_{2}=9$
- BinaryToDecimal $-\mathrm{n}=1001_{2}$:
- $\mathrm{n}=1^{*} 2^{3}+0^{*} 2^{2}+0^{*} 2^{1}+1^{*} 2^{0}=9$
- DecimalToBinary $-\mathrm{n}=7$:
- $\mathrm{b}_{1}=\mathrm{n}$ rem $2=1, \mathrm{n}=\mathrm{n} \operatorname{div} 2=3$
- $\mathrm{b}_{2}=\mathrm{n}$ rem $2=1, \mathrm{n}=\mathrm{n} \operatorname{div} 2=1$
- $\mathrm{b}_{3}=\mathrm{n}$ rem $2=1, \mathrm{n}=\mathrm{n} \operatorname{div} 2=0$.
- STOP

Special functions - contd.

- Changing bases: In general need to go through the decimal representation
- E.g: $101_{7}=$? ${ }_{9}$
- $101_{7}=1^{*} 7^{2}+0^{*} 7^{1}+1^{*} 7^{0}=50$
- Decimal to Base 9:
- $\mathrm{d}_{1}=\mathrm{n}$ rem $9=5, \mathrm{n}=\mathrm{n} \operatorname{div} 9=5$
- $\mathrm{b}_{2}=\mathrm{n}$ rem $9=5, \mathrm{n}=\mathrm{n} \operatorname{div} 9=0$.
- STOP
- So $101_{7}=55_{9}$

Special functions - tricks

- Changing bases that are powers of 2 :
- Can often use shortcuts.
- Binary to Octal:
- $10111101=275_{8}$
- Binary to Hexadecimal:
- $10111101=$ BD $_{16}$
- Hexadecimal to Octal: Go through binary, not decimal.

Sequences

- Finite or infinite
- Calculus - limits of infinite sequences (proving existence, evaluation...)
- E.g.
- Arithmetic progression (series)

1, 4, 7, 10, ...

- Geometric progression (series)

$$
3,6,12,24,48 \ldots
$$

Similarity with series

- $S=a_{1}+a_{2}+a_{3}+a_{4}+\ldots$. (n terms)
- Consider the sequence
$S_{1}, S_{2}, S_{3}, \ldots S_{n}$, where
$S_{i}=a_{1}+a_{2}+\ldots+a_{i}$

In general we would like to evaluate sums of series - useful in algorithm analysis.
e.g. what is the total time spent in a nested loop?

Sums of common series

- Arithmetic series
e.g. $1+2+\ldots+\mathrm{n}$ (occurs in the analysis of running time of simple for loops)
general form $\Sigma_{i} \mathrm{t}_{\mathrm{i}}, \mathrm{t}_{\mathrm{i}}=\mathrm{a}+\mathrm{ib}$
- Geometric series
e.g. $1+2+2^{2}+2^{3}+\ldots+2^{n}$ general form $\Sigma_{i} t_{i}, t_{i}=a r^{i}$
- More general series (not either of the above)
$1^{2}+2^{2}+3^{2}+4^{2}+\ldots+n^{2}$

Sums of common series - 2

- Technique for summing arithmetic series
- Technique for summing geometric series
- More general series - more difficult

Caveats

- Need to be very careful with infinite series
- In general, tools from calculus are needed to know whether an infinite series sum exists.
- There are instances where the infinite series sum is much easier to compute and manipulate, e.g. geometric series with $r<1$.

Cardinality revisited

- A set is finite (has finite cardinality) if its cardinality is some (finite) integer n.
- Two sets A, B have the same cardinality iff there is a one-to-one correspondence from A to B
- E.g. alphabet (lower case)
- a b c
- 123

Infinite sets

-Why do we care?

- Cardinality of infinite sets
- Do all infinite sets have the same cardinality?

Countable sets

Defn: Is finite OR has the same cardinality as the positive integers.
-Why do we care?
E.g.

- The algorithm works for "any n"
- Induction!

Countable sets - contd.

- Proving this involves (usually) constructing an explicit bijection with positive integers.
- Fact (Will not prove): Any subset of a countable set is countable.

Will prove that

- The rationals are countable!
- The reals are not countable

The integers are countable

- Write them as

$$
0,1,-1,2,-2,3,-3,4,-4, \ldots \ldots
$$

- Find a bijection between this sequence and $1,2,3,4, \ldots \ldots$
Notice the pattern:
$1 \rightarrow 0 \quad 2 \rightarrow 1 \quad$ So $f(n)=n / 2$ if n even
$3 \rightarrow-1 \quad 4 \rightarrow 2$ -(n-1)/2 o.w.
$5 \rightarrow-2 \quad 6 \rightarrow 3$

Other simple bijections

- Odd positive integers
$1 \rightarrow 1 \quad 2 \rightarrow 3 \quad 3 \rightarrow 5 \quad 4 \rightarrow 7 \ldots$
- Union of two countable sets A, B is countable:
Say f: $N \rightarrow A, g: N \rightarrow B$ are bijections
New bijection h: $N \rightarrow A \cup B$
$h(n)=f(n / 2)$ if n is even
$=g((n-1) / 2)$ if n is odd.

The rationals are countable

- Show that $Z^{+} \times Z^{+}$is countable.
- Trivial injection between $\mathrm{Q}^{+}, \mathrm{Z}^{+} \times \mathrm{Z}^{+}$.
- To go from Q^{+}to Q, use the trick used to construct a bijection from Z to Z^{+}.
- Details on the board.

The reals are not countable

- Wrong proof strategy:
- Suppose it is countable
- Write them down in increasing order
- Prove that there is a real number between any two successive reals.
- WHY is this incorrect?
(Note that the above "proof" would show that the rationals are not countable!!)

The reals are not countable - 2

- Cantor diagonalization argument (1879)
- VERY powerful, important technique.
- Proof by contradiction.
- Sketch (details done on the board)
- Assume countable
- look at all numbers in the interval $[0,1$)
- list them in ANY order
- show that there is some number not listed

Notes

- The cardinality of neither the reals nor the integers are finite, yet one set is countable, the other is not.
- Q: Is there a set whose cardinality is "inbetween"?
- Q : Is the cardinality of R the same as that of $[0,1)$?

