
11/21/2011 1

Math/CSE 1019:
Discrete Mathematics for Computer Science

Fall 2011

Suprakash Datta
datta@cse.yorku.ca

Office: CSEB 3043
Phone: 416-736-2100 ext 77875

Course page: http://www.cse.yorku.ca/course/1019



11/21/2011 2

“We maintain a subset of elements sorted within a list. 
The remaining elements are off to the side somewhere. 
Initially, think of the first element in the array as a 
sorted list of length one. One at a time, we take one of 
the elements that is off to the side and we insert it into 
the sorted list where it belongs. This gives a sorted list 
that is one element longer than it was before. When the 
last element has been inserted, the array is completely 
sorted.”

English descriptions:

- Easy, intuitive.
- Often imprecise, may leave out critical details.

Sorting: Insertion sort
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Insertion sort
for j=2 to length(A)

do key=A[j]
i=j-1
while i>0 and A[i]>key
do A[i+1]=A[i]

i--
A[i+1]:=key

for j=2 to length(A)
do key=A[j]

i=j-1
while i>0 and A[i]>key
do A[i+1]=A[i]

i--
A[i+1]:=key

Can you understand
The algorithm?
I would not know
this is insertion sort!

Moral: document code!

What is a good loop invariant?

It is easy to write a loop invariant if you understand what 
the algorithm does.

Use assertions.
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An assertion is a statement about the current state of 
the data structure that is either true or false.

Useful for
– thinking about algorithms
– developing
– describing
– proving correctness

An assertion is not a task for the algorithm to perform. 
It is only a comment that is added for the benefit of the 
reader.

Using Assertions

An assertion need not 
consist of formal/math  
mumbo jumbo 

Use an informal description
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Example of Assertions
• Preconditions: Any assumptions that must be true 

about the input instance.
• Postconditions: The statement of what must be true 

when the algorithm/program returns.
Correctness:

<PreCond> & <code> ⇒ <PostCond>

If the input meets the preconditions, 
then the output must meet the postconditions. 

If the input does not meet the preconditions, 
then nothing is required.

Assertions – contd.



11/21/2011 6

Example of Assertions
Assertions – contd.

<preCond>
codeA
loop  

<loop-invariant>
exit when <exit Cond>
codeB

endloop
codeC
<postCond>
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Correctness of Insertion sort
for j=2 to length(A)

do key=A[j]
Insert A[j] into the sorted 

sequence A[1..j-1]
i=j-1
while i>0 and A[i]>key
do A[i+1]=A[i]

i--
A[i+1]:=key

for j=2 to length(A)
do key=A[j]

Insert A[j] into the sorted 
sequence A[1..j-1]

i=j-1
while i>0 and A[i]>key
do A[i+1]=A[i]

i--
A[i+1]:=key

Invariant: at the start of 
each for loop, A[1…j-1] 
consists of elements 
originally in A[1…j-1] but in 
sorted order

Initialization: j = 2, the invariant trivially holds because 
A[1] is a sorted array ☺
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Correctness of Insertion sort - 2
for j=2 to length(A)

do key=A[j]
i=j-1
while i>0 and A[i]>key
do A[i+1]=A[i]

i--
A[i+1]:=key

for j=2 to length(A)
do key=A[j]

i=j-1
while i>0 and A[i]>key
do A[i+1]=A[i]

i--
A[i+1]:=key

Invariant: at the start of 
each for loop, A[1…j-1] 
consists of elements 
originally in A[1…j-1] but in 
sorted order

Maintenance: the inner while loop moves elements A[j-1],
A[j-2], …, A[k] one position right without changing their 
order. Then the former A[j] element is inserted into kth

position so that A[k-1] ≤ A[k] ≤ A[k+1].

A[1…j-1] sorted + A[j] → A[1…j] sorted 
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Correctness of Insertion sort - 3
for j=2 to length(A)

do key=A[j]
Insert A[j] into the sorted    

sequence A[1..j-1]
i=j-1
while i>0 and A[i]>key
do A[i+1]=A[i]

i--
A[i+1]:=key

for j=2 to length(A)
do key=A[j]

Insert A[j] into the sorted    
sequence A[1..j-1]

i=j-1
while i>0 and A[i]>key
do A[i+1]=A[i]

i--
A[i+1]:=key

Invariant: at the start of 
each for loop, A[1…j-1] 
consists of elements 
originally in A[1…j-1] but in 
sorted order

Termination: the loop terminates, when j=n+1. 
Then the invariant states: “A[1…n] consists of elements 
originally in A[1…n] but in sorted order” ☺
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Many, many other sorts
• Good algorithms: merge sort, quick sort
• Terrible algorithms: bubble sort



11/21/2011 11

•Measures of efficiency:
–Running time
–Space used
– others

•Efficiency as a function of input size (NOT value!)
–Number of data elements (numbers, points)
–Number of bits in an input number 
e.g. Find the factors of a number n,

Determine if an integer n is prime

Model: What machine do we assume? Intel? Motorola? 
P3? P4?

Analysis of Algorithms



11/21/2011 12

The RAM model

• Generic abstraction of sequential computers
• RAM assumptions:

– Instructions (each taking constant time), we 
usually choose one type of instruction as a 
characteristic operation that is counted:

• Arithmetic (add, subtract, multiply, etc.)
• Data movement (assign)
• Control (branch, subroutine call, return)
• Comparison

– Data types – integers, characters, and floats
– Ignores memory hierarchy, network!
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Consider the problem of factoring an integer n
Note: Public key cryptosystems depend critically on 
hardness of factoring – if you have a fast algorithm to 
factor integers, most e-commerce sites will become 
insecure!!

Trivial algorithm: Divide by 1,2,…, n/2 (n/2 divisions)
aside: think of an improved algorithm

Always evaluate running time as a function of the SIZE of 
the input (e.g. in the number of bits or the number of ints, 
or number of floats, or number of chars,…)

Importance of input size
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Analysis of Find-max

Find-max (A)
1. max ← A[1]
2. for j ← 2 to length(A)
3.    do if (max < A[j])
4.             max ← A[j]
5. return max

cost
c1
c2
c3
c4
c5

times
1
n
n-1
0≤k≤n-1
1

• COUNT the number of cycles (running time) as a 
function of the input size

Running time (upper bound): c1 + c5 – c3 – c4 + (c2 + c3 + c4)n
Running time (lower bound): c1 + c5 – c3 – c4 + (c2 + c3 )n
Q: What are the values of ci?
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Best/Worst/Average Case Analysis
• Best case: A[1] is the largest element. 
• Worst case: elements are sorted in increasing order
• Average case: ? Depends on the input characteristics
Q: What do we use?
A: Worst case or Average-case is usually 

used:
– Worst-case is an upper-bound;  in certain 

application domains (e.g., air traffic control, 
surgery) knowing the worst-case time complexity 
is of crucial importance

– Finding the average case can be very difficult; 
needs knowledge of input distribution.

– Best-case is not very useful.
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Best/Worst/Average Case (2)
– For a specific size of input n, investigate running 

times for different input instances:

1n

2n

3n

4n

5n

6n



11/21/2011 17

Best/Worst/Average Case (3)
– For inputs of all sizes:

1n

2
n

3n

4n

5n

6n

Input instance size

R
un

ni
ng

 ti
m

e

1    2    3    4    5     6    7    8     9   10   11   12  
…..

best-case

average-case

worst-case



11/21/2011 18

Asymptotic notation : Intuition
Running time bound: c1 + c5 – c3 – c4 + (c2 + c3 + c4)n
What are the values of ci? machine-dependent

A simpler expression: c5 + c6n [still complex]. 

Q: Can we throw away the lower order terms?
A: Yes, if we do not worry about constants, and there

exist constants c7, c8 such that c7n ≤ c5 + c6n ≤ c8n,
then we say that the running time is θ(n). 

Need some mathematics to formalize this (LATER).

Q: Are we interested in small n or large?
A: Assume interested in large n – cleaner theory, 

usually realistic. Remember the assumption when 
interpreting results!
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Asymptotic notation - continued
Will do the relevant math later. For now, the intuition is: 
1. O() is used for upper bounds “grows slower than”
2. Ω() used for lower bounds “grows faster than”
3. Θ() used for denoting matching upper and lower 

bounds. “grows as fast as”
These are bounds on running time, not for the problem

The thumbrules for getting the running time are
1. Throw away all terms other than the most significant 

one -- Calculus may be needed
e.g.: which is greater: n log n or n1.001 ?

2. Throw away the constant factor.
3. The expression is Θ() of whatever’s left.

Asymptotic optimality – expression inside Θ() best possible.
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INPUT: A[1..n] - an array of integers, k, 1 ≤k ≤length(A)
OUTPUT: an element m of A such that m is the kth largest 
element in A.

Brute Force: Find the maximum, remove it. Repeat k-1 times. 
Find maximum.

Q: How good is this algorithm?
A:  Depends on k! Can show that the running time is 

Θ(nk). If k=1, asymptotically optimal.
Also true for any constant k.

If k = log n, running time is Θ(n log n).  Is this good?
If k = n/2 (MEDIAN), running time is Θ(n2).

Definitely bad! Can sort in O(n log n)!

Q: Is there a better algorithm? YES! 

A Harder Problem

Think for a minute
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Analysis of Insertion Sort

for j←2 to n
do key←A[j]

Insert A[j] into the sorted    
sequence A[1..j-1]
i←j-1
while i>0 and A[i]>key

do A[i+1]←A[i]
i ← i-1

A[i+1] ← key

cost
c1
c2
0

c3
c4
c5
c6
c7

times
n
n-1
n-1

n-1

n-1

2

n
jj

t
=∑

2
( 1)n

jj
t

=
−∑

2
( 1)n

jj
t

=
−∑

Let’s compute the running time as a function of the 
input size
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Analysis of Insertion Sort - contd
• Best case: elements already sorted → tj=1, running 

time = f(n), i.e., linear time. 
• Worst case: elements are sorted in inverse order 

→ tj=j, running time = f(n2), i.e., quadratic time
• Average case: tj=j/2, running time = f(n2), i.e.,

quadratic time

• We analyzed insertion sort, and it has worst case 
running time An2 + Bn + C, where  A = (c5+c6+c7)/2 
etc.

• Q1: How useful are the details in this result?
• Q2: How can we simplify the expression?
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Back to asymptotics…
We will now look more formally at the 

process of simplifying running times and 
other measures of complexity. 
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Asymptotic analysis - details
• Goal: to simplify analysis of running time by getting 

rid of ”details”, which may be affected by specific 
implementation and hardware

– like “rounding”: 1,000,001 ≈ 1,000,000
– 3n2 ≈ n2

• Capturing the essence: how the running time of an 
algorithm increases with the size of the input in the 
limit.
– Asymptotically more efficient algorithms are best 

for all but small inputs 
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Asymptotic notation

• The “big-Oh” O-Notation
– asymptotic upper bound
– f(n) ∈ O(g(n)), if there exists 

constants c and n0, s.t. f(n) ≤
c g(n) for n ≥ n0

– f(n) and g(n) are functions over 
non-negative integers

• Used for worst-case analysis

)(nf
( )c g n⋅

0n Input Size

R
un

ni
ng

 T
im

e
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• The “big-Omega” Ω−Notation
– asymptotic lower bound
– f(n) ∈ Ω(g(n)) if there exists 

constants c and n0, s.t. c g(n) ≤
f(n) for n ≥ n0

• Used to describe best-case 
running times or lower 
bounds of algorithmic 
problems
– E.g., lower-bound of searching 

in an unsorted array is Ω(n). 

Input Size

R
un

ni
ng

 T
im

e )(nf
( )c g n⋅

0n

Asymptotic notation - contd
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Asymptotic notation - contd
• Simple Rule: Drop lower order terms and 

constant factors.
– 50 n log n ∈ O(n log n)
– 7n - 3 ∈ O(n)
– 8n2 log n + 5n2 + n ∈ O(n2 log n)

• Note: Even though 50 n log n ∈ O(n5), we 
usually try to express a O() expression using  
as small an order as possible
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• The “big-Theta” Θ−Notation
– asymptoticly tight bound
– f(n) ∈ Θ(g(n)) if there exists 

constants c1, c2, and n0, s.t.  
c1 g(n) ≤ f(n) ≤ c2 g(n) for n ≥
n0

• f(n) ∈ Θ(g(n)) if and only if f(n)
∈ Ο(g(n))  and f(n) ∈ Ω(g(n))

• O(f(n)) is often misused 
instead of Θ(f(n)) 

Input Size

R
un

ni
ng

 T
im

e )(nf

0n

Asymptotic notation - contd

)(ngc ⋅2

)(ngc ⋅1
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Asymptotic Notation - contd
• Two more asymptotic notations

– "Little-Oh" notation f(n)=o(g(n))
non-tight analogue of Big-Oh

• For every c, there should exist n0 , s.t. f(n) ≤ c 
g(n) for n ≥ n0

• Used for comparisons of running times. 
If f(n) ∈ o(g(n)), it is said that g(n) dominates 
f(n).

• More useful defn:
(uses calculus)

– "Little-omega" notation f(n) ∈ ω(g(n))
non-tight analogue of Big-Omega

f(n)  
lim      ----- = 0
n→∞ g(n)
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Asymptotic Notation - contd
• (VERY CRUDE) Analogy with real numbers

– f(n) = O(g(n)) ≅ f ≤ g
– f(n) = Ω(g(n)) ≅ f ≥ g
– f(n) = Θ(g(n)) ≅ f = g
– f(n) = o(g(n)) ≅ f < g
– f(n) = ω(g(n)) ≅ f > g

• Abuse of notation: f(n) = O(g(n)) actually 
means f(n) ∈ O(g(n)).
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Asymptotic Notation - contd
Common uses: 

Θ(1) – constant.
nΘ(1) – polynomial
2Θ(n) – exponential

• When is asymptotic analysis useful?
• When is it NOT useful?

Many, many abuses of asymptotic notation in Computer 
Science literature.

Lesson: Always remember the implicit assumptions…

Be careful!
nΘ(1) ≠ Θ(n1)

2Θ(n) ≠ Θ(2n)
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Comparison of running times 

3125192n

2448831n4

4242654777072n2

7826087166666409620n log n

90000001500002500400n

1 hour1 minute1 second

Maximum problem size (n)Running
Time
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Classifying functions

T(n) 10 100 1,000 10,000

log n 3 6 9 13

n1/2 3 10 31 100

10 100 1,000 10,000

n log n 30 600 9,000 130,000

n2 100 10,000 106 108

n3 1,000 106 109 1012

2n 1,024 1030 10300 103000

n
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Logarithmic functions
• log10n = # digits to write n
• log2n = # bits to write n

= 3.32 log10n
• log(n1000) = 1000 log(n)

Differ only by a 
multiplicative 
constant.

(log n)5 = log5 n

Poly Logarithmic (a.k.a. polylog)
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Crucial asymptotic facts

Logarithmic  <<  Polynomial
log1000 n  << n0.001 For sufficiently large n

Linear  <<  Quadratic
10000 n  << 0.0001 n2 For sufficiently large n

Polynomial  <<  Exponential
n1000 << 20.001 n For sufficiently large n
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Are constant functions constant?

• 5
• 1,000,000,000,000
• 0.0000000000001
• -5
• 0
• 8 + sin(n)

Yes
Yes
Yes
No
No
Yes Lie in between

7
9

The running time of the algorithm is a 
“Constant”: It does not depend significantly 
on the size of the input.

Write θ(1).
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Polynomial functions
Quadratic
• n2 

• 0.001 n2

• 1000 n2

• 5n2  + 3000n + 2log n

Polynomial
• nc 

• n0.0001

• n10000

• 5n2 + 8n + 2log n 
• 5n2 log n
• 5n2.5

Lie in between

Lie in between
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Exponential functions

• 2n 

• 20.0001 n

• 210000 n

• 8n

• 2n / n100

•2n · n100

= 23n

> 20.5n

< 22n

20.5n > n100

2n = 20.5n · 20.5n > n100 · 20.5n

2n / n100 > 20.5n
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Proving asymptotic expressions
Use definitions!
e.g. f(n) = 3n2 + 7n  + 8 = θ(n2)
f(n) ∈ Θ(g(n)) if there exists constants c1, c2, and n0, s.t.  
c1 g(n) ≤ f(n) ≤ c2 g(n) for n ≥ n0

Here g(n) = n2

One direction (f(n) = Ω(g(n)) is easy
c1 g(n) ≤ f(n) holds for c1 = 3 and n ≥ 0

The other direction (f(n) = Ο(g(n)) needs more care
f(n) ≤ c2 g(n) holds for c2 = 18 and n ≥ 1 (CHECK!)

So n0 = 1
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Proving asymptotic expressions - 2
Caveats!
1. constants c1, c2 MUST BE POSITIVE .
2. Could have chosen c2 = 3 + ε for any ε>0. WHY?
-- because 7n  + 8 ≤ εn2 for n ≥ n0  for some sufficiently 
large n0. Usually, the smaller the ε you choose, the 
harder it is to find n0. So choosing a large ε is easier.

3. Order of quantifiers
∃c1 c2 ∃n0 ∀ n ≥ n0, c1g(n) ≤ f(n) ≤ c2g(n)
vs
∃n0 ∀ n ≥ n0 ∃c1 c2, c1g(n) ≤ f(n) ≤ c2g(n) 
-- allows a different c1 and c2 for each n. Can choose 
c2 = 1/n!! So we can “prove” n3 = Θ (n2).
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Why polynomial vs exponential ?
Philosophical/Mathematical reason – polynomials have 
different properties, grow much slower; mathematically 
natural distinction. 

Practical reasons
1. almost every algorithm ever designed and every 
algorithm considered practical are very low degree 
polynomials with reasonable constants.
2. a large class of natural, practical problems seem to 
allow only exponential time algorithms. Most experts 
believe that there do not exist any polynomial time 
algorithms for any of these.
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Important thumbrules for sums 
”addition made easy” – Jeff Edmonds.

Geometric like: f(i) = 2Ω(i) ⇒ Σ f(i) = Θ(f(n))

Arithmetic like: i.f(i) = i Θ(1) ⇒ Σ f(i) = Θ(nf(n))

Harmonic: f(i) = 1/i ⇒ Σ f(i) = Θ(log n)

Bounded tail: i.f(i) = 1/iΘ(1) ⇒ Σ f(i) = Θ(1)
Use as thmbrules only

i=1

n

i=1

i=1

i=1

n

n

n

“Theta of last term”

no of terms x last term

“Theta of first term”


