Math/CSE 1019:
 Discrete Mathematics for Computer Science

 Fall 2011
Suprakash Datta datta@cse.yorku.ca

Office: CSEB 3043
Phone: 416-736-2100 ext 77875

Course page: http://www.cse.yorku.ca/course/1019

Sorting: Insertion sort

"We maintain a subset of elements sorted within a list.
The remaining elements are off to the side somewhere. Initially, think of the first element in the array as a sorted list of length one. One at a time, we take one of the elements that is off to the side and we insert it into the sorted list where it belongs. This gives a sorted list that is one element longer than it was before. When the last element has been inserted, the array is completely sorted."

English descriptions:

- Easy, intuitive.

- Often imprecise, may leave out critical details.

Insertion sort

```
for \(\mathrm{j}=2\) to length(A)
    do key=A[j]
    \(\mathrm{i}=\mathrm{j}-1\)
    while \(\mathrm{i}>0\) and \(\mathrm{A}[\mathrm{i}]>\) key
        do \(\mathrm{A}[\mathrm{i}+1]=\mathrm{A}[\mathrm{i}]\)
            i--
    \(\mathrm{A}[\mathrm{i}+1]:=\mathrm{key}\)
```

What is a good loop invariant?
It is easy to write a loop invariant if you understand what the algorithm does.

Use assertions.

Using Assertions

An assertion is a statement about the current state of the data structure that is either true or false.

Useful for

- thinking about algorithms
- developing
- describing
- proving correctness Use an informal description

An assertion is not a task for the algorithm to perform. It is only a comment that is added for the benefit of the reader.

Assertions - contd.

Example of Assertions

- Preconditions: Any assumptions that must be true about the input instance.
- Postconditions: The statement of what must be true when the algorithm/program returns.
Correctness:

$$
<\text { PreCond }>\&<\text { code }>\Rightarrow<\text { PostCond }>
$$

If the input meets the preconditions,
then the output must meet the postconditions.
If the input does not meet the preconditions, then nothing is required.

Assertions - contd.

Example of Assertions

<preCond>
codeA
loop
<loop-invariant> exit when <exit Cond> codeB

endloop
codeC
<postCond>

Correctness of Insertion sort

```
for }\textrm{j}=2\mathrm{ to length(A)
    do key=A[j]
    Insert A[j] into the sorted
        sequence A[1..j-1]
    i=j-1
    while i>0 and A[i]>key
        do A[i+1]=A[i]
        i--
    A[i+1]:=key
```

Invariant: at the start of each for loop, A[1...j-1] consists of elements originally in $A[1 . . . j-1]$ but in sorted order

Initialization: $j=2$, the invariant trivially holds because $A[1]$ is a sorted array ©

Correctness of Insertion sort - 2

```
for j=2 to length(A)
    do key=A[j]
    i=j-1
    while i>0 and A[i]> key
        do }\textrm{A}[\textrm{i}+1]=\textrm{A}[\textrm{i}
        i--
    A[i+1]:=key
```

Invariant: at the start of each for loop, A[1...j-1] consists of elements originally in A[1...j-1] but in sorted order

Maintenance: the inner while loop moves elements $A[j-1]$, $A[j-2], \ldots, A[k]$ one position right without changing their order. Then the former $A[j]$ element is inserted into $k^{\text {th }}$ position so that $A[k-1] \leq A[k] \leq A[k+1]$.
$A[1 . . . j-1]$ sorted $+A[j] \rightarrow A[1 . . . j]$ sorted

Correctness of Insertion sort - 3

```
for j=2 to length(A)
    do key=A[j]
    Insert A[j] into the sorted
        sequence A[1..j-1]
    i=j-1
    while i>0 and A[i]>key
        do }\textrm{A}[\textrm{i}+1]=\textrm{A}[\textrm{i}
        i--
    A[i+1]:=key
```

Invariant: at the start of each for loop, A[1...j-1] consists of elements originally in A[1...j-1] but in sorted order

Termination: the loop terminates, when $j=n+1$.
Then the invariant states: "A[1...n] consists of elements originally in A[1...n] but in sorted order"©

Many, many other sorts

- Good algorithms: merge sort, quick sort
- Terrible algorithms: bubble sort

Analysis of Algorithms

-Measures of efficiency:
-Running time
-Space used

- others
-Efficiency as a function of input size (NOT value!)
-Number of data elements (numbers, points)
-Number of bits in an input number
e.g. Find the factors of a number n,

Determine if an integer n is prime

Model: What machine do we assume? Intel? Motorola?
P3? P4?

The RAM model

- Generic abstraction of sequential computers
- RAM assumptions:
- Instructions (each taking constant time), we usually choose one type of instruction as a characteristic operation that is counted:
- Arithmetic (add, subtract, multiply, etc.)
- Data movement (assign)
- Control (branch, subroutine call, return)
- Comparison
- Data types - integers, characters, and floats
- Ignores memory hierarchy, network!

Importance of input size

Consider the problem of factoring an integer n Note: Public key cryptosystems depend critically on hardness of factoring - if you have a fast algorithm to factor integers, most e-commerce sites will become insecure!!

Trivial algorithm: Divide by $1,2, \ldots, \mathrm{n} / 2$ ($\mathrm{n} / 2$ divisions)
aside: think of an improved algorithm

Always evaluate running time as a function of the SIZE of the input (e.g. in the number of bits or the number of ints, or number of floats, or number of chars,...)

Analysis of Find-max

- COUNT the number of cycles (running time) as a function of the input size

```
Find-max (A)
1. max}\leftarrowA[1
2. for j}\leftarrow2\mathrm{ to length(A)
3. do if (max < A[j])
4. }\operatorname{max}\leftarrowA[j
5. return max
```

cost	times
c_{1}	1
c_{2}	n
c_{3}	$n-1$
c_{4}	$0 \leq k \leq n-1$
c_{5}	1

Running time (upper bound): $\mathrm{C}_{1}+\mathrm{C}_{5}-\mathrm{C}_{3}-\mathrm{C}_{4}+\left(\mathrm{C}_{2}+\mathrm{C}_{3}+\mathrm{C}_{4}\right) \mathrm{n}$ Running time (lower bound): $\mathrm{c}_{1}+\mathrm{C}_{5}-\mathrm{C}_{3}-\mathrm{C}_{4}+\left(\mathrm{c}_{2}+\mathrm{c}_{3}\right) \mathrm{n}$ Q : What are the values of c_{i} ?

Best/Worst/Average Case Analysis

- Best case: $\mathrm{A}[1]$ is the largest element.
- Worst case: elements are sorted in increasing order
- Average case: ? Depends on the input characteristics

Q: What do we use?
A: Worst case or Average-case is usually used:

- Worst-case is an upper-bound; in certain application domains (e.g., air traffic control, surgery) knowing the worst-case time complexity is of crucial importance
- Finding the average case can be very difficult; needs knowledge of input distribution.
- Best-case is not very useful.

Best/Worst/Average Case (2)

- For a specific size of input n, investigate running times for different input instances:

Best/Worst/Average Case (3)
 - For inputs of all sizes:

Asymptotic notation : Intuition

Running time bound: $\mathrm{c}_{1}+\mathrm{c}_{5}-\mathrm{C}_{3}-\mathrm{c}_{4}+\left(\mathrm{c}_{2}+\mathrm{c}_{3}+\mathrm{c}_{4}\right) \mathrm{n}$ What are the values of c_{i} ? machine-dependent

A simpler expression: $\mathrm{c}_{5}+\mathrm{c}_{6} \mathrm{n}$ [still complex].
Q: Can we throw away the lower order terms?
A: Yes, if we do not worry about constants, and there exist constants $\mathrm{c}_{7}, \mathrm{c}_{8}$ such that $\mathrm{c}_{7} \mathrm{n} \leq \mathrm{c}_{5}+\mathrm{c}_{6} \mathrm{n} \leq \mathrm{c}_{8} \mathrm{n}$, then we say that the running time is $\theta(\mathrm{n})$.

Need some mathematics to formalize this (LATER).
Q: Are we interested in small n or large?
A: Assume interested in large n - cleaner theory, usually realistic. Remember the assumption when interpreting results!

Asymptotic notation - continued

Will do the relevant math later. For now, the intuition is:

1. O() is used for upper bounds "grows slower than"
2. $\Omega()$ used for lower bounds "grows faster than"
3. $\Theta()$ used for denoting matching upper and lower bounds. "grows as fast as"
These are bounds on running time, not for the problem
The thumbrules for getting the running time are
4. Throw away all terms other than the most significant one -- Calculus may be needed
e.g.: which is greater: $\mathrm{n} \log \mathrm{n}$ or $\mathrm{n}^{1.001}$?
5. Throw away the constant factor.
6. The expression is $\Theta()$ of whatever's left.

Asymptotic optimality - expression inside $\Theta()$ best possible.

A Harder Problem

INPUT: A[1..n] - an array of integers, $k, 1 \leq k \leq l e n g t h(A)$
OUTPUT: an element m of A such that m is the $k^{\text {th }}$ largest element in A.

Think for a minute
Brute Force: Find the maximum, remove it. Repeat k-1 times. Find maximum.

Q: How good is this algorithm?
A: Depends on k ! Can show that the running time is $\Theta(\mathrm{nk})$. If $\mathrm{k}=1$, asymptotically optimal.
Also true for any constant k.
If $k=\log n$, running time is $\Theta(n \log n)$. Is this good?
If $k=n / 2$ (MEDIAN), running time is $\Theta\left(n^{2}\right)$.
Definitely bad! Can sort in $\mathrm{O}(\mathrm{n} \log \mathrm{n})$!

Q: Is there a better algorithm? YES!

Analysis of Insertion Sort

Let's compute the running time as a function of the input size

for $j \leftarrow 2$ to n
do key $A[j]$
Insert $A[j]$ into the sorted
sequence $A[1 . . j-1]$
$i \leftarrow j-1$
while $i>0$ and $A[i]>k e y$
do $A[i+1] \leftarrow A[i]$
$i \leftarrow i-1$
$A[i+1] \leftarrow$ key

cost
C_{1}
C_{2}
0
C_{3}
C_{4}
C_{5}
C_{6}
C_{7}

Analysis of Insertion Sort - contd

- Best case: elements already sorted $\rightarrow t_{j}=1$, running time $=f(n)$, i.e., linear time.
- Worst case: elements are sorted in inverse order $\rightarrow t_{j}=j$, running time $=f\left(n^{2}\right)$, i.e., quadratic time
- Average case: $t_{j}=j / 2$, running time $=f\left(n^{2}\right)$, i.e., quadratic time
- We analyzed insertion sort, and it has worst case running time $\mathrm{An}^{2}+\mathrm{Bn}+\mathrm{C}$, where $\mathrm{A}=\left(\mathrm{c}_{5}+\mathrm{c}_{6}+\mathrm{c}_{7}\right) / 2$ etc.
- Q1: How useful are the details in this result?
- Q2: How can we simplify the expression?

Back to asymptotics...

We will now look more formally at the process of simplifying running times and other measures of complexity.

Asymptotic analysis - details

- Goal: to simplify analysis of running time by getting rid of "details", which may be affected by specific implementation and hardware
- like "rounding": 1,000,001 $\approx 1,000,000$
$-3 n^{2} \approx n^{2}$
- Capturing the essence: how the running time of an algorithm increases with the size of the input in the limit.
- Asymptotically more efficient algorithms are best for all but small inputs

Asymptotic notation

- The "big-Oh" O-Notation
- asymptotic upper bound
$-f(n) \in O(g(n))$, if there exists constants c and n_{0}, s.t. $\mathbf{f}(\mathbf{n}) \leq$ $\mathbf{c} \boldsymbol{g}(\mathbf{n})$ for $n \geq n_{0}$
$-f(n)$ and $g(n)$ are functions over non-negative integers
- Used for worst-case analysis

Asymptotic notation - contd

- The "big-Omega" Ω-Notation
- asymptotic lower bound
$-f(n) \in \Omega(g(n))$ if there exists constants c and n_{0}, s.t. $\mathbf{c} \mathbf{g}(\mathbf{n}) \leq$ $\mathbf{f}(\mathbf{n})$ for $n \geq n_{0}$
- Used to describe best-case running times or lower bounds of algorithmic problems
- E.g., lower-bound of searching
 in an unsorted array is $\Omega(n)$.

Asymptotic notation - contd

- Simple Rule: Drop lower order terms and constant factors.
$-50 n \log n \in \mathrm{O}(n \log n)$
$-7 n-3 \in \mathrm{O}(n)$
$-8 n^{2} \log n+5 n^{2}+n \in \mathrm{O}\left(n^{2} \log n\right)$
- Note: Even though $50 n \log n \in \mathrm{O}\left(n^{5}\right)$, we usually try to express a O() expression using as small an order as possible

Asymptotic notation - contd

- The "big-Theta" Θ-Notation
- asymptoticly tight bound
$-f(n) \in \Theta(g(n))$ if there exists constants c_{1}, c_{2}, and n_{0}, s.t. $\mathbf{c}_{\mathbf{1}} \mathbf{g}(\mathbf{n}) \leq \mathbf{f}(\mathrm{n}) \leq \mathbf{c}_{\mathbf{2}} \mathbf{g}(\mathbf{n})$ for $n \geq$ n_{0}
- $f(n) \in \Theta(g(n))$ if and only if $f(n)$ $\in O(g(n))$ and $f(n) \in \Omega(g(n))$
- $O(f(n))$ is often misused instead of $\Theta(f(n))$

Asymptotic Notation - contd

- Two more asymptotic notations
- "Little-Oh" notation $f(n)=o(g(n))$ non-tight analogue of Big-Oh
- For every c, there should exist n_{0}, s.t. $\mathbf{f}(\mathbf{n}) \leq \mathbf{c}$ $\mathbf{g}(\mathbf{n})$ for $n \geq n_{0}$
- Used for comparisons of running times. If $f(n) \in O(g(n))$, it is said that $g(n)$ dominates $f(n)$.
- More useful defn:
(uses calculus)

- "Little-omega" notation $f(n) \in \omega(g(n))$ non-tight analogue of Big-Omega

Asymptotic Notation - contd

- (VERY CRUDE) Analogy with real numbers

$$
\begin{aligned}
-f(n)=O(g(n)) & \cong \quad f \leq g \\
-f(n)=\Omega(g(n)) & \cong \quad f \geq g \\
-f(n)=\Theta(g(n)) & \cong \quad f=g \\
-f(n)=o(g(n)) & \\
-f(n)=\omega(g(n)) & \cong \quad \cong \quad f<g
\end{aligned}
$$

- Abuse of notation: $f(n)=O(g(n))$ actually means $f(n) \in O(g(n))$.

Asymptotic Notation - contd

Common uses:

$$
\begin{aligned}
& \Theta(1)-\text { constant. } \\
& \mathrm{n}^{\Theta(1)}-\text { polynomial } \\
& 2^{\Theta(n)}-\text { exponential }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\text { Be careful! }}{\mathrm{n}^{\Theta(1)} \neq \Theta\left(n^{1}\right)} \\
& 2^{\Theta(n)} \neq \Theta\left(2^{n}\right)
\end{aligned}
$$

- When is asymptotic analysis useful?
- When is it NOT useful?

Many, many abuses of asymptotic notation in Computer Science literature.

Lesson: Always remember the implicit assumptions...

Comparison of running times

Running	Maximum problem size (n$)$		
	1 second	1 minute	1 hour
$400 n$	2500	150000	9000000
$20 n \log n$	4096	166666	7826087
$2 n^{2}$	707	5477	42426
n^{4}	31	88	244
2^{n}	19	25	31

Classifying functions

$\boldsymbol{T}(\boldsymbol{n})$	10	100	1,000	10,000
$\log \boldsymbol{n}$	3	6	9	13
$\boldsymbol{n}^{1 / 2}$	3	10	31	100
\boldsymbol{n}	10	100	1,000	10,000
$\boldsymbol{n} \log \boldsymbol{n}$	30	600	9,000	130,000
\boldsymbol{n}^{2}	100	10,000	10^{6}	10^{8}
\boldsymbol{n}^{3}	1,000	10^{6}	10^{9}	10^{12}
$2^{\boldsymbol{n}}$	1,024	10^{30}	10^{300}	10^{3000}

Logarithmic functions

- $\log _{10} \mathrm{n}=\#$ digits to write n
- $\log _{2} n=\#$ bits to write n $=3.32 \log _{10} n$

Differ only by a multiplicative constant.

- $\log \left(n^{1000}\right)=1000 \log (n)$

Poly Logarithmic (a.k.a. polylog)

$$
(\log n)^{5}=\log ^{5} n
$$

Crucial asymptotic facts

Logarithmic << Polynomial $\log ^{1000} n \ll n^{0.001}$ For sufficiently large n

Linear << Quadratic
$10000 \mathrm{n} \ll 0.0001 \mathrm{n}^{2}$ For sufficiently large n

Polynomial << Exponential
$\mathrm{n}^{1000} \ll 2^{0.001 \mathrm{n}}$ For sufficiently large n

Are constant functions constant?

The running time of the algorithm is a "Constant": It does not depend significantly on the size of the input.

Yes • 5
Write $\theta(1)$.
Yes • 1,000,000,000,000
Yes • 0.0000000000001
No •-5
No • 0
Yes • $8+\sin (\mathrm{n})$
Lie in between

Polynomial functions

Exponential functions

- 2^{n}
- $2^{0.0001 n}$
- $2^{10000 n}$
$\frac{\cdot 8^{n}}{-2^{n} / n^{100}}>2^{3 n}$
$\cdot 2^{\mathrm{n}} \cdot \mathrm{n}^{100}<2^{2 \mathrm{n}}$

$$
\begin{gathered}
2^{0.5 n}>n^{100} \\
2^{\mathrm{n}}=2^{0.5 n} \cdot 2^{0.5 n}>n^{100} \cdot 2^{0.5 n} \\
2^{n} / n^{100}>2^{0.5 n}
\end{gathered}
$$

Proving asymptotic expressions

Use definitions!
e.g. $\mathrm{f}(\mathrm{n})=3 \mathrm{n}^{2}+7 \mathrm{n}+8=\theta\left(\mathrm{n}^{2}\right)$
$f(n) \in \Theta(g(n))$ if there exists constants c_{1}, c_{2}, and n_{0}, s.t.
$\mathbf{c}_{1} \mathbf{g}(\mathbf{n}) \leq \mathbf{f}(\mathbf{n}) \leq \mathbf{c}_{2} \mathbf{g}(\mathbf{n})$ for $n \geq n_{0}$
Here $g(n)=n^{2}$
One direction ($\mathrm{f}(\mathrm{n})=\Omega(\mathrm{g}(\mathrm{n})$) is easy
$\mathrm{c}_{1} \mathrm{~g}(\mathrm{n}) \leq \mathrm{f}(\mathrm{n})$ holds for $\mathrm{c}_{1}=3$ and $n \geq 0$

The other direction $(\mathrm{f}(\mathrm{n})=\mathrm{O}(\mathrm{g}(\mathrm{n}))$ needs more care $\mathrm{f}(\mathrm{n}) \leq \mathrm{c}_{2} \mathrm{~g}(\mathrm{n})$ holds for $\mathrm{c}_{2}=18$ and $n \geq 1$ (CHECK!)

So $n_{0}=1$

Proving asymptotic expressions - 2

Caveats!

1. constants $\mathrm{c}_{1}, \mathrm{c}_{2}$ MUST BE POSITIVE.
2. Could have chosen $c_{2}=3+\varepsilon$ for any $\varepsilon>0$. WHY?
-- because $7 n+8 \leq \varepsilon n^{2}$ for $n \geq n_{0}$ for some sufficiently large n_{0}. Usually, the smaller the ε you choose, the harder it is to find n_{0}. So choosing a large ε is easier.
3. Order of quantifiers
$\exists \mathrm{c}_{1} \mathrm{c}_{2} \exists \mathrm{n}_{0} \forall \mathrm{n} \geq \mathrm{n}_{0}, \mathrm{c}_{1} \mathrm{~g}(\mathrm{n}) \leq \mathrm{f}(\mathrm{n}) \leq \mathrm{c}_{2} \mathrm{~g}(\mathrm{n})$
vs
$\exists \mathrm{n}_{0} \forall \mathrm{n} \geq \mathrm{n}_{0} \exists \mathrm{c}_{1} \mathrm{c}_{2}, \mathrm{c}_{1} \mathrm{~g}(\mathrm{n}) \leq \mathrm{f}(\mathrm{n}) \leq \mathrm{c}_{2} \mathrm{~g}(\mathrm{n})$
-- allows a different c_{1} and c_{2} for each n . Can choose
$c_{2}=1 / n!$! So we can "prove" $n^{3}=\Theta\left(n^{2}\right)$.

Why polynomial vs exponential ?

Philosophical/Mathematical reason - polynomials have different properties, grow much slower; mathematically natural distinction.

Practical reasons

1. almost every algorithm ever designed and every algorithm considered practical are very low degree polynomials with reasonable constants.
2. a large class of natural, practical problems seem to allow only exponential time algorithms. Most experts believe that there do not exist any polynomial time algorithms for any of these.

Important thumbrules for sums

"addition made easy" - Jeff Edmonds.
"Theta of last term"
Geometric like: $\mathrm{f}(\mathrm{i})=2^{\Omega(\mathrm{i})} \Rightarrow \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{f}(\mathrm{i})=\Theta(\mathrm{f}(\mathrm{n}))$
no of terms x last term
Arithmetic like: i.f $(\mathrm{i})=\mathrm{i}{ }^{\Theta(1)} \Rightarrow \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{f}(\mathrm{i})=\Theta(\mathrm{nf}(\mathrm{n}))$
Harmonic: $f(i)=1 / i \Rightarrow \sum^{n} f(i)=\Theta(\log n)$
"Theta of first term"
Bounded tail: i.f $(\mathrm{i})=1 / \mathrm{i}^{\Theta(1)} \Rightarrow \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{f}(\mathrm{i})=\Theta(1)$ Use as thmbrules only

