Math/CSE 1019:
 Discrete Mathematics for Computer Science

 Fall 2011
Suprakash Datta datta@cse.yorku.ca

Office: CSEB 3043
Phone: 416-736-2100 ext 77875

Course page: http://www.cs.yorku.ca/course/1019

Problem 3: Detecting palindromes

- "reads the same forwards and backwards" e.g. pop, noon
- Using an auxiliary array
- Without using an auxiliary array

A Harder Problem

INPUT: A[1..n] - an array of integers, $k, 1 \leq k \leq l e n g t h(A)$ OUTPUT: an element m of A such that m is the $k^{\text {th }}$ largest element in A .

Think for a minute

Brute Force:

Find the maximum, remove it.
Repeat k-1 times.
Find maximum.
Q: How good is this algorithm?
Q: Is there a better algorithm? For some k, YES!

Sorting and Searching

- Very basic operations
- Used very,very often in real applications
- LOTS of new ideas

Searching an array

- Given an array A[1..m] does there exist a number (key) n?
- Unsorted array: linear search
- Sorted array: Can you do better?
- YES!

Binary search: Use the sorted property to eliminate large parts of the array.

Pseudocode for binary search

```
algorithm BinarySearch(\langleL(1..n), key\rangle)
\langle\boldsymbol{re}-\boldsymbol{cond}\rangle:\langleL(1..n),key\rangle is a sorted list and key is an element.
\langlepost-cond\rangle: If the key is in the list, then the output consists of an index i
                                such that L(i)=key.
begin
    i=1,j=n
    loop
            <loop-invariant>: If the key is contained in L(1..n), then
                the key is contained in the sublist L(i..j).
            exit when j\leqi
            mid = i\frac{i+j}{2}\rfloor
            if}(key\leqL(mid)) then
                j=mid % Sublist changed from L(i,j) to L(i..mid)
            else
                i=mid +1 % Sublist changed from L(i,j) to L(mid+1,j)
            end if
    end loop
    if(key =L(i)) then
        return(i)
    else
        return("key is not in list")
    end if
end algorithm
```


Data structures

- By preprocessing (sorting) the data into a data structure (sorted array), we were able to speed up search queries. Very common idea in Computer Science
- Many other data structures are commonly used: linked lists, trees, hash tables,....
- CSE 2011: Data Structures
- CSE 4101: Advanced Data Structures

Sorting

- Simple algorithm using FindMax

1. $j=n$
2. while ($\mathrm{j}>1$) $\{$
3. maxindex = index of max $A[1 . . j]$
4. swap (A[maxindex], A[j])
5. $\mathrm{j}=\mathrm{j}-1$
6. $\}$

- Is this the fastest possible sort?

