Math/CSE 1019:
 Discrete Mathematics for Computer Science

Fall 2011

Suprakash Datta
 datta@cse.yorku.ca

Office: CSEB 3043
Phone: 416-736-2100 ext 77875

Course page: http://www.cs.yorku.ca/course/1019

Algorithms: topics

- Notation/pseudocode
- Design of Algorithms (for simple problems)
- Analysis of algorithms
- Is it correct?

Loop invariants

- Is it "good"?

Efficiency

- Is there a better algorithm?

Lower bounds

What is an algorithm?

- For this course: detailed pseudocode, or a detailed set of steps
- Q: Given a problem, can we always design an algorithm to solve it?
- CSE 3101: Design and Analysis of Algorithms
- Different design paradigms
- Different analysis techniques
- Intractability results

Problem 1

- Swapping two numbers in memory

$$
\begin{aligned}
& \operatorname{tmp}=x ; \\
& x=y ; \\
& y=\operatorname{tmp} ;
\end{aligned}
$$

-Can we do it without using tmp ?
-Why does this work?

$$
\begin{aligned}
& x=x+y ; \\
& y=x-y ; \\
& y=x-y ;
\end{aligned}
$$

Making change

- Want to make change for ANY amount using the fewest number of coins
- Simple "greedy" algorithm: keep using the largest denomination possible
- Works for our coins: 1,5,10, 25,100.
- Does it always work?
- Fails for the following coins: $1,5,7,10$ e.g: $14=10+1+1+1+1,14=7+7$
- Read proof from the text

Problem 2

Q1. How do you find the max of n numbers (stored in array A?)
Formal specs:
INPUT: A[1..n] - an array of integers
OUTPUT: an element m of A such that $A[j] \leq m$, $1 \leq \mathrm{j} \leq$ length (A)

Find-max (A)

1. max $\leftarrow A[1] \quad$ How many comparisons?
2. for $\mathrm{j} \leftarrow 2$ to length(A)
3. do if (max < A[j])
4. $\quad \max \leftarrow A[j]$
5. return max

Q2. Can you think of another algorithm? Take a minute.... How many comparisons does it take?

Reasoning (formally) about algorithms

1. I/O specs: Needed for correctness proofs, performance analysis. e.g. for sorting: INPUT: A[1..n] - an array of integers OUTPUT: a permutation B of A such that $\mathrm{B}[1] \leq \mathrm{B}[2] \leq \ldots \leq \mathrm{B}[\mathrm{n}]$
2. CORRECTNESS: The algorithm satisfies the output specs for EVERY valid input.
3. ANALYSIS: Compute the running time, the space requirements, number of cache misses, disk accesses, network accesses,....

Correctness proofs of algorithms

INPUT: A[1..n] - an array of integers
OUTPUT: an element m of A such that $m \leq A[j], 1 \leq j \leq l e n g t h(A)$
Find-max (A)

1. $\max \leftarrow A[1]$
2. for $\mathrm{j} \leftarrow 2$ to length (A)
3. do if $(\max <A[j])$
4. $\quad \max \leftarrow A[j]$
5. return max

Proof 1 [by contradiction]: Suppose the algorithm is incorrect. Then for some input A,
(a) max is not an element of A or (b) ($\exists j \mid \max <A[j]$).

Max is initialized to and assigned to elements of $A-(a)$ is impossible. For (b): after the $j^{\text {th }}$ iteration of the for-loop (lines $2-4$), max $\geq A[j]$. From lines 3,4, max only increases.
Therefore, upon termination, max $\geq A[j]$, which contradicts (b).

Correctness proofs of algorithms -2

INPUT: A[1..n] - an array of integers
OUTPUT: an element m of A such that $m \leq A[j], 1 \leq j \leq l e n g t h(A)$
Find-max (A)

1. $\max \leftarrow A[1]$
2. for $\mathrm{j} \leftarrow 2$ to length (A)
3. do if $(\max <A[j])$
4. $\max \leftarrow A[j]$
5. return max
```
Prove that for any valid
Input, the output of
Find-max satisfies the output condition.
```

Proof 2[use loop invariants]:
(identify invariant) I(i): At the beginning of iteration j of for loop, max contains the maximum of A[1..j-1].
(Proof) True for $\mathrm{j}=2$. For $\mathrm{j}>2$, assume that ($\mathrm{j}-1$) holds. So at the beginning of iteration $\mathrm{j}-1$, max $=$ maximum of $\mathrm{A}[1 . . j-$ $2]$.

Loop invariant proof - contd

Case (a) $A[j]$ is the maximum of $A[1 . . j]$. In lines 3,4 , max is set to $A[j]$.

Case (b) $A[j]$ is not the maximum of $A[1 . . j]$, so the maximum of $A[1 . . j]$ is in $A[1 . . j-1]$. By our assumption max already has this value and by lines 3-4 max is unchanged in this iteration.

You will see more non-trivial examples in CSE 2011, 3101.

Loop invariant proofs

STRATEGY: We proved that the invariant holds at the beginning of iteration j for each j used by Find-max.

Upon termination, $\mathrm{j}=$ length(A)+1. (WHY?) The invariant holds, and so max contains the maximum of $A[1 . . n]$
-- STRUCTURED PROOF TECHNIQUE -- VERY SIMILAR TO INDUCTION

Advantages:
Rather than reason about the whole algorithm, reason about SINGLE iterations of SINGLE loops.

Problem 2

Q1. How do you find the max and min of n numbers (stored in array A?)

Q2. Can you think of a FASTER algorithm?

