
CROS and
System Shell

UMI-R3-171



ii May 2000

CROS and System Shell
Revision History Date

001 First release as UMI-R3-171.
CROS 1.16 for C500C.

99-05

002 Updated for C500C 00-05



May 2000 iii

Contents

Chapter 1 ..................................................................................................................... 1
Introduction ................................................................................... 1

Chapter 2 ..................................................................................................................... 3
The Basics ...................................................................................... 3

The Operating System: CROS .................................................... 4
The System Shell....................................................................... 5
Running CROS.......................................................................... 6

Starting CROS ..................................................................... 6
Shutting Down CROS .......................................................... 6

Accessing the System Shell........................................................ 7
Starting With CROS Not Yet Running ................................... 7
Accessing With CROS Already Running ................................ 7
Starting Additional System Shells......................................... 7
Exiting Out of a Shell........................................................... 8
Checking System Shell Version Number ............................... 8

Using the Shell: Basics .............................................................. 9
Entering Commands ............................................................ 9
Command History................................................................ 9

Working With Directories..........................................................10
Changing the Current Directory ..........................................10
Listing the Contents of a Directory ......................................11
Creating a Directory............................................................12

Working with Files....................................................................13
Viewing the Contents of a File .............................................13
Deleting a File.....................................................................14

Accessing System Tools and Applications ..................................15
Accessing the Application Shell (ash) ...................................15
Accessing the Teach Pendant ..............................................15

Installing CROS on the PC........................................................18
Installing CROS on the Controller .............................................18

Testing CROS on the Controller...........................................18

Chapter 3 ................................................................................................................... 19
System Shell Commands................................................................19

Categories of Commands ..........................................................20
Command Names: CROS, UNIX, and DOS ...........................23
Path Separators ..................................................................24
Wildcards ...........................................................................25

General Command Format........................................................26
Detailed Descriptions................................................................27

file_name ............................................................................27
ash.....................................................................................28
auto ...................................................................................28
axst ....................................................................................29
cd.......................................................................................29
chmod ................................................................................30
cksum ................................................................................31
compile...............................................................................31



iv May 2000

copy ...................................................................................31
cp copy...............................................................................32
crosver ...............................................................................32
date....................................................................................33
del......................................................................................33
df .......................................................................................33
/diag/cal ............................................................................34
/diag/calgrip ......................................................................35
/diag/configur....................................................................35
/diag/encres ......................................................................35
/diag/f3diag .......................................................................36
/diag/f3pack ......................................................................36
/diag/setup........................................................................36
/diag/xzero ........................................................................37
/diag/zero ..........................................................................38
dir ......................................................................................38
do.......................................................................................38
echo ...................................................................................39
edit.....................................................................................39
exit.....................................................................................40
help....................................................................................40
kill .....................................................................................41
lcd......................................................................................42
ln .......................................................................................43
ls dir ..................................................................................43
md .....................................................................................45
mem...................................................................................46
mkdev ................................................................................46
mkdir md ...........................................................................47
mkfifo.................................................................................47
mksock...............................................................................48
more...................................................................................48
mount ................................................................................49
msleep................................................................................49
mv ren................................................................................50
odometer ............................................................................50
panel ..................................................................................50
ps.......................................................................................52
pause .................................................................................54
pedit...................................................................................54
pwd....................................................................................55
r3c compile.........................................................................55
rc1 .....................................................................................56
ren .....................................................................................58
rm del ................................................................................58
rmdir..................................................................................58
rpp .....................................................................................58
shell ...................................................................................59
shutdown ...........................................................................59
siocfg..................................................................................61
sync ...................................................................................62
touch..................................................................................62
unmount ............................................................................62
v3make ..............................................................................63
ver......................................................................................64



1

C H A P T E R  1

Introduction

This Guide describes the CROS operating system and the system
shell. CROS handles the controller resources and permits different
processes to have access to these resources. CROS monitors point of
control to the robot, so that, for safety reasons, only one process or
application can command the robot at one time.

The system shell provides user access to the CROS operating system.
From a computer running Robcomm3 or a suitable terminal
emulator, you can access a system shell which permits
communication directly with the CROS operating system. The system
shell gives you command line access to the CROS operating system
on the controller, so that you can work with system directories and
files, system memory, and robot applications.

If you have a POLARA lab system, CROS for Windows NT is installed
on your PC so that you can run RAPL 3 programs on the PC as well
as the controller. Note however, that if CROS is installed on your
computer and on a controller, the versions must be compatible in
order to ensure proper operation of your applications.



2 CROS and System Shell: Introduction

May 2000



3

C H A P T E R  2

The Basics

This chapter describes how to use the CROS Operating System and
the Shell (ash). There are nine sections:

•  The Operating System: CROS

•  The System Shell

•  Running CROS

•  Accessing the System Shell

•  Using the Shell: Basics

•  Working With Directories

•  Working With Files

•  Accessing System Tools and Applications

•  Installing CROS.



4 CROS and System Shell: The Basics

May 2000

The Operating System: CROS
The operating system of a computer manages the system resources
and provides services to the various processes or programs that run
on the system. Examples of operating systems for personal computers
are DOS, Windows, and UNIX.

The CROS (CRS Robotics Robot Operating System) operating system
on the controller performs the same functions for the controller. The
CROS operating system:

•  controls processes

•  manages memory

•  manages storage

•  controls input and output.

CROS directs the interpretation of instructions for each process.
CROS controls the resources of the controller and allows tasks to use
the CPU, memory, and input/output devices. CROS schedules
processes according to priorities, allows processes to wait for events,
and handles the termination of processes.

CROS allocates memory for the processes being executed. It also
manages the storage of files, the system’s own files, RAPL-3 libraries
needed by user programs, and the user’s application programs and
application variable files.

CROS also controls the transfer of data, including data coming in to
the controller from the keyboard and going out to the screen during a
terminal session.

As a user, you can monitor and direct the activity of the operating
system by giving commands to the operating system using the system
shell interface.



CROS and System Shell: The Basics 5

May 2000

The System Shell
The system shell provides a command line interface between the user
and the operating system. Consider the system shell as a tool which
lets you access the CROS operating system. The shell interprets input
from the keyboard and sends it to the controller, and takes output
from the controller and interprets it for display to the screen. You
access the system shell using a terminal emulator such as the
terminal feature of Robcomm3.

The system shell is started up by the init (first) process when the
system is started. You can create another system shell at any time
from within a system shell or an application shell.

Note: If you exit from the only existing shell, the init process opens
another shell. This ensures that there is always a shell open to
interact with CROS.



6 CROS and System Shell: The Basics

May 2000

Running CROS
When the controller is powered on, CROS is started up. In CROS, the
init process starts a system shell. You do not have to start a system
shell yourself to access CROS.

Starting CROS
CROS is started by the controller's start up sequence. You can power
on the controller before opening a terminal session on your computer,
but if you start a terminal session before powering on the controller,
you can follow the controller boot sequence. The terminal window
buffer captures all CROS start up messages which can be checked if
there is a problem at start up.

1. Start a terminal session. (If you have Robcomm3, start
Robcomm3, and open the terminal window. On the tool bar, click
the terminal icon, or from the C500 drop-down menu, select the
Terminal command.)

2. At the controller, turn on power at the controller's main power
switch.

Shutting Down CROS
Use the shutdown now command or the front panel shutdown
sequence to shut down the operating system in an orderly manner. If
you bypass the shutdown command and just turn off the controller at
its main power switch, the file system on the controller could be
corrupted. All data on the controller would be lost.

To shut down CROS from a development computer

1. From a terminal window on the development computer, enter:

$ shutdown now
2. Wait until the controller LCD screen displays the message:

System Halted

If you do not have a development computer connected, you can shut
down CROS manually from the front panel.

Note: The front panel shutdown sequence is only supported in CROS
versions 2.6 and later.

To shut down CROS from the front panel

1. While holding down the Home button on the front panel, press
and release the Pause/Continue button.

2. Release the Home button. The controller will begin shutting down.

Note: You must complete steps 1 and 2 within a second or two. If
nothing happens, simply try again a little faster or a little slower.

3. Wait until the controller LCD screen displays the message:

System Halted



CROS and System Shell: The Basics 7

May 2000

Accessing the System Shell
CROS and the system shell, running on the controller, are
independent of any terminal session, running on the computer. The
system shell is running even if a terminal session is not. If the
controller is on and it started up normally, both CROS and the
system shell are running. You can access the system shell by opening
a terminal session at any time when CROS is running. If the system
shell $ prompt is not displayed, press the enter key and it will appear.

A system shell is considered a process by CROS, and all processes
including the system shells are listed in the process table. The
process table can be viewed by issuing the ps (process status)
command from a running system shell.

Starting With CROS Not Yet Running
If you open a terminal session before starting up CROS, you have
access to the shell at the terminal window when CROS starts. The
start up messages are displayed at the terminal window and finally
the system shell $ prompt is displayed. If the system shell $ prompt
is not displayed, press the enter key, and it will appear.

Accessing With CROS Already Running
You can start CROS and the shell (by starting the controller) without
having a terminal session open. You can work with the shell at a
terminal session and close the terminal session. You can also
disconnect your PC from the controller and later re-connect.

CROS and the shell continue to run on the controller as long as the
controller is powered.

To access the shell, open a terminal session. You may need to press
Enter to reach the system shell prompt.

Starting Additional System Shells
You can have more than one system shell running at one time. The
number of system shells and application shells is limited by available
memory. You can start another system shell from an existing system
shell or from an application shell.

To start another system shell from an existing system shell or an
application shell, enter the command:

shell

To confirm the existence of the system shell, use the process status
command ps to view the process table.

ps

The existing system shells are listed in the process table displayed.
Refer to the System Shell Commands section for details regarding the
shell and ps commands.



8 CROS and System Shell: The Basics

May 2000

Exiting Out of a Shell
To exit out of the current system shell, enter the exit command:

exit

The exit command terminates the current system shell and returns
you to your starting point. If you only have one system shell active,
the exit command terminates your only active shell but the init
process automatically starts up a new shell. As a result, you always
have a shell (an interface) to the system running.

The application shell also has an exit command which exits you out
of the application shell. If you exit an application shell (ash), you are
returned to the system shell from which you opened the application
shell.

Checking System Shell Version Number
To determine which version of the system shell you are running,
enter the version command at the system shell $ prompt:

ver

The application shell, available at the ash prompt > , also has a
version command, ver, to determine which version of the application
shell you are running.



CROS and System Shell: The Basics 9

May 2000

Using the Shell: Basics
From the system shell prompt you can issue commands to the
controller operating system, CROS. A complete list of the available
system shell commands and the required format and parameters is
provided in the System Shell Commands section. Some on-line,
command specific help is available. If you enter a system shell
command with incorrect format or parameters, the system shell
displays the proper command usage.

Entering Commands
Shell commands and parameters are entered as strings of characters
separated by spaces:
  command file_name

If a string is recognized as a valid shell command with properly
specified parameters, then the corresponding CROS command is
called and executed. If the command string is not recognized as a
valid shell command, the shell assumes that the string is calling an
executable program (application) and searches for that executable in
the current directory and then in the bin directory. If an executable is
not found in either directory, a message is displayed to the effect that
the string is not recognized.

If the command is recognized but the parameters given are incorrect,
the command usage is displayed.

Command History
The command line remembers the previous 10 commands. To review
or repeat previous commands, you can move through the list of
commands. To re-issue a previous command when it is displayed,
press the Enter key.

There are also other command line editing features which can be
used in conjunction with the standard keyboard editing functions to
construct command line inputs.

The following table shows how to display the remembered commands:

Ctrl + p  or
Up arrow key

displays the previous command issued

Ctrl + n  or
Down arrow key

displays the next command issued, if you have
already displayed the previous command(s) issued

Ctrl + f  or
Right arrow key

moves the cursor forward in the command string

Ctrl + b  or
Left arrow key

moves the cursor backward in the command string

Ctrl + d deletes character



10 CROS and System Shell: The Basics

May 2000

Working With Directories
When issuing system shell commands which specify files or
directories, you must specify not only the file name but also the
specific path to the directory in which the file is saved. This applies
also to executable files (applications).

There are two simple exceptions to this rule:

1. If the file is in the active directory (the directory you are currently
in), then the path can be omitted. CROS automatically looks in
the active directory for the specified file or application.

2. If an executable file is in the bin directory, the path to the bin
directory is optional. CROS looks in the bin directory for
commands which are not recognized as system shell commands.
If an executable file or application is placed in the bin directory, it
can be accessed from any directory without the path.

Note: If a file with the same name exists in the active directory, CROS
assumes that it is the specified file. In other words, CROS first looks
in the active directory for the specified file before searching in the bin
directory.

To display the current active directory, issue the pwd (print working
directory) command:

$ pwd

The active directory is displayed. All directories and files accessible
with system shell commands are stored in the controller memory.
System shell commands do not provide access to the files stored in
host computer memory.

Changing the Current Directory
Change the current active directory with the cd (change directory)
command.

Tip: Use the pwd command to display the currently active directory.

To change to a Lower Level Directory

Name the sub-directory for each step. The names of the sub-
directories are available with the ls (list directory) or dir (list
directory) command.

One Step at a Time
Name the sub-directory.

$ cd app
$ cd examples
$ cd lab

All Steps at Once
Name all sub-directories. Use a forward slash or a backslash.

$ cd app/examples/lab
$ cd app\examples\lab



CROS and System Shell: The Basics 11

May 2000

To change to a Higher Level Directory

Use the cd command with .. (dot, dot). The .. (dot, dot) characters
as parameters to the cd command move up one level to the parent
directory of the current active directory.

One Step at a Time
Two dots.

$ cd ..
$ cd ..

All Steps at Once
Use a forward slash or a backslash with two dots for each level.

$ cd ../../..
$ cd ..\..\..

Tip: You can move to a higher level directory and then down a
different directory path in a single cd command. For example:

$ cd ..\..\app\test

Moves up two directory levels and then down to the test directory in
the app directory.

Listing the Contents of a Directory
You can list the names of sub-directories and files of a directory with
the ls (list directory) or dir (list directory) command.

1. Move to the directory you want to list using the cd command.

2. Enter ls or dir.
$ ls
$ dir

The sub-directories and files of the current working directory are
displayed.

With the -R parameter, you can list all directories and files in the file
system from anywhere in the system. Refer to the ls command listing
in the System Shell Commands chapter.



12 CROS and System Shell: The Basics

May 2000

Creating a Directory
You can create a new directory or sub-directory with the md
command. A new directory is created in the active directory.

1. Change to the directory you want as the parent directory with the
cd command.

2. Use md and name the new directory.
$ md newname
$ md examples

The directory specified is created as a sub-directory of the working
directory. You can check that your directory was created with the ls
or dir command.

Note: You cannot make a directory and sub-directory at the same
time, but you can make a sub-directory of an existing directory using
the directory path. For example, to make a new directory ‘lab’ with
the sub directory ‘analysis’, enter:
   $ md  lab
   $ md  lab\analysis

This is equivalent to:
   $ md  lab
   $ cd  lab
   $ md  analysis



CROS and System Shell: The Basics 13

May 2000

Working with Files

Viewing the Contents of a File
With the system shell commands, you can view the contents of CROS
system files. Some files (binary files), such as executable files and
variable files (.v3), may be unintelligible when displayed in the
terminal window.

To view the contents of a file, use the more command. As an example,
you can display the error codes for a subsystem using the more
command. In the lib/errors CROS directory, there are 8 files with the
name in the format sys001.err. Each file is a list of errors for a
specific subsystem. For more information about system errors and
error messages, refer to the RAPL-3 Reference Guide for a description
of error descriptors.

To display the errors for the sub system 1 (Kernel), from the root
directory, enter:

$ more lib/errors/sys001.err

The following list of errors is the response:
Kernel
000 no error
001 general error
002 not found
003 no such process
004 interrupted system call
005 i/o error
006 no device/operation not supported
007 too many arguments
008 not an executable
009 bad file descriptor
010 no child process
011 permission denied
012 out of memory
013 access denied
016 resource busy
017 file exists
018 cross device link
019 not supported by device
020 not a directory
021 is a directory
22 invalid argument
023 too many files on the system
024 too many files
025 not a tty
026 text busy
028 filesystem full
029 illegal operation on pipe or socket
034 result out of range
035 resource temporarily unavailable
037 timed out
039 not a socket
040 no server
041 no client
042 device is being reset
043 directory is not empty
045 operation not supported



14 CROS and System Shell: The Basics

May 2000

Deleting a File
To delete files from CROS, use the system shell rm (remove)
command. Refer to the system shell commands.

Note: A deleted file cannot be recovered. To set aside a file until you
are certain you will not need to recover it, create a directory with a
name such as trash and move the file to that directory using the mv
(move) command. Later, delete the contents of trash when you are
certain you do not need the file.

As an example, if you want to replace an existing variable file for your
‘trim’ application stored in app/trim directory, enter the following
commands (assuming the root directory is the active directory):

$ md trash
$ mv /app/trim/trim.v3  /trash/trim_old.v3

When you want to delete the file from the root directory, enter:
$ rm /trash/trim_old.v3

Refer to the System Shell Commands chapter of this guide for details
of the mv and rm commands.



CROS and System Shell: The Basics 15

May 2000

Accessing System Tools and Applications
One of the key tasks you will want to perform from the system shell is
access your applications and other system tools. You can access and
run your applications directly from the system shell, or you can open
either the teach pendant or the application shell and run your
applications.

It is a more efficient use of your controller resources to run
applications directly from the system shell rather than from the teach
pendant or the application shell. When the teach pendant or
application shell is running, it is using memory and related
resources. However, you need to access the teach pendant and/or the
application shell when you develop your applications.

Accessing the Application Shell (ash)
To access the application shell from the system shell, enter:

ash <application name>

If you omit the application name, the available application shells
created are listed and you are prompted to specify which application
you want to open. For details on the application shell, refer to the
Application Shell section in this Application Development Guide.

From ash, you can return to the system shell by entering the exit
command at the ash ‘application name’> prompt. You can also open
another system shell by entering:

$ shell

at the ash ‘application name’> prompt.

Accessing the Teach Pendant
From the system shell you can also activate (or just give point of
control to) the teach pendant.

Note: In boot-up sequence, point of control is given to the teach
pendant.

Executables can be executed or run from the system shell. A RAPL-3
program, when successfully compiled, creates an executable (object)
file. The object file must be on the controller before it can be run.
Refer to the other sections of this Application Development Guide for
details about creating applications.

Compiled RAPL-3 object files have no extensions in their file names
and are executable files. The RAPL-3 source files (.r3 extensions) and
variable files (.v3 extensions) are not executable.

When an executable is run, a process is created. You can check the
status of the process using the ps (process status) command, which
displays the process table listing all processes currently running on
the system. Refer to the System Shell Commands section in this
chapter for details on the ps command.



16 CROS and System Shell: The Basics

May 2000

RAPL-3 programs can be run from the teach pendant, the application
shell, or the system shell.

In fact, running a robot application from the system shell is more
efficient than running it from the application shell. Without the
application shell loaded into memory, the system can use that
memory during execution. During application development, you must
have the application shell to teach locations and move the arm.

Running From the File's Directory

One approach to running a file is to first change the current directory
to the directory that contains the file to be run.

1. Move to the directory containing the program using the cd command.
 $ ls

app/  bin/  conf/  dev/  lib/  log/  sbin/  tmp/
$ cd app
$ ls
load/  prepare/  sample/  test/
$ cd test
$ ls
test     test.v3

2. Enter the name of the file:
$ test

To check on the status of the file while it is running, use the ps
command.

Running From a Parent Directory

You do not have to be in the file’s directory to run the file. You can
run the file from a parent directory or any directory which is at a
higher level up the directory tree from the program.

1. Remain in the higher level directory.
 $    ls

app/  bin/  conf/  dev/  lib/  log/  sbin/  tmp/

2. Enter the path down to the file:
$    app/test/test



CROS and System Shell: The Basics 17

May 2000

Running From Another Directory

The current working directory is the default where the system
searches for the executable file. You can specify a path to another
directory.

You do not have to be in the file’s directory or a parent directory to
run the file. You can run the file from any other directory. However,
you must specify a path to the executable file. You must provide the
path to a common shared parent directory (which could be the root
directory) and then the path down to the file’s directory.

1. After changing to another directory, remain in that directory.
 $    ls

app/  bin/  conf/  dev/  lib/  log/  sbin/  tmp/
cd bin

2. Enter the path up, using .. (dot, dot) for each step, to the
directory common to both the current directory and the file's
directory, and the path back down to the file.
$ ../app/test/test

Running an Executable in the Background

When you run an application from the system shell, the program
executes and, when the program has completed, command returns
automatically to the system shell. With CROS, you can start a file
and put it in the background, and while it is still running, return to
the system shell prompt in order to enter other commands.

1. To run an application test in the background, enter the name of
the program, a space, and an ampersand.
$ test &

The program runs and the system shell $ prompt returns
immediately. To check on the status of the program while it is
running, use the ps command.

Note: Never run an interactive program in the background. An
interactive program requires user input.

Note: If the executable process running in the background requires
and receives access to the robot, no other process running can
control the robot.



18 CROS and System Shell: The Basics

May 2000

Installing CROS on the PC
If you are compiling applications on your development computer, or
you want to upgrade the firmware on your controller, you must
install CROS on the development computer.

Before you Begin
If you have previously installed CROS on the computer, remove the
previous version with the Windows Uninstall feature available from
the Control panel.

To install CROS on the computer.
1. Insert your Robot System Documentation and Software CD in the

CD-ROM drive on the development computer.

2. Wait until the startup screen appears.

3. On the startup screen, click Install CROS for the C500C and
follow the instructions provided on screen.

Installing CROS on the Controller
Although CROS is pre-installed on your controller at the factory, you
can upgrade or re-install CROS on the controller if necessary.

To install CROS on the controller
1. Install CROS on the development computer. The Firmware

Download Utility is automatically installed as part of the CROS
installation.

2. Connect the development computer to your controller.

3. Using Robcomm’s file transfer, copy all files in the /app and /conf
directories to a safe location on the development computer.

Note: As part of the firmware download procedure, the file system
on the controller is completely erased and rebuilt.

4. Follow the instructions in the Firmware Download Utility Guide
(provided on the Documentation and Software CD) to install
CROS on the controller.

Testing CROS on the Controller
You can test to ensure that CROS is running on the controller by
running a RAPL-3 program. Run the application at low speed and
ensure you have immediate access to an e-stop button in the event
that the application locations are no longer accurate.



19

C H A P T E R  3

System Shell Commands

This chapter describes the commands that you can use through the
system shell. There are three sections:

•  Categories of commands

•  Similarities to UNIX and DOS

•  Detailed descriptions of all commands listed alphabetically



20 CROS and System Shell: System Shell Commands

May 2000

Categories of Commands
Details of the commands are given in the alphabetical listing.

Start and Exit
shell start new system shell
exit exit current system shell
ver display version of system shell
crosver display version of operating system (CROS)
msleep put system shell to sleep
shutdown shut down operating system (CROS)
ash start new application shell
Terminal
echo echo a message to the console
pause wait for the user to type <enter>
Shells
do execute a shell script
auto update the startup shell file
/diag/setup setup (configure) the robot
Maintenance
siocfg reconfigure serial port
Memory
mem display space in memory
df display space on file system
sync flush filesystem buffers; defragment memory on C500
Program Editing, Compiling, Teaching
edit start the terminal editor to edit a file
pedit start the pendant editor to edit a file
r3c
compile

invoke the RAPL-3 compiler

rc1 provide the main pass of the RAPL-3 compiler
touch change the modification time of a file to the current time
v3make make or update a v3 file for a program
rpp handles .define macros and .ifdef conditionals
pendant run the teach pendant



Chapter 2: System Shell Commands 21

May 2000

Directories, Files, Devices
pwd display current working directory
cd change current working directory
ls
dir

list directory contents

mkdir
md

make new directory

rmdir remove/delete directory
ln make link to file
mv
ren

move/rename file

rm
del

remove/delete or unlink file

cp
copy

copy file

more display contents of file
type display contents of file
cksum calculate checksum of file
chmod change protection mode
mkdev make device
mkfifo make fifo
mksock make socket
mount mount a file system on a directory
unmount unmount a file system from a directory
Processes
ps display status of processes
kill terminate a process
Time
date display or set date and time
Front Panel
panel provide a menu for selecting and executing shell commands
lcd display characters at front panel lcd



22 CROS and System Shell: System Shell Commands

May 2000

Robot Related Commands
axst† display low-level status information for the robot axes
calrdy† move the robot to the calibration ready position
gtype† set the robot gripper type
home† home the robot
joint† move a robot joint
limp† limp robot axis
motor† move a robot motor
nolimp† unlimp robot axes
ready† move the robot to the ready position
pendant† run the teach pendant
speed† set the robot speed
wact†
w0†

display the robot actual position

Robot Configuration and Maintenance Commands
odometer display the robot armpower on-time odometer
/diag/cal calibrate robot axes
/diag/calgrip calibrate the servo gripper
/diag/encres reset the joint position encoders (F series only)
/diag/f3diag perform F3 specific diagnostics
/diag/f3pack move an F3 robot into its packing position
/diag/setup master configuration program for setting up the robot
/diag/xzero zero a particular motor position register
/diag/zero zero all motor position registers
Help
help get descriptions of system commands

† These commands are identical to the like-named ash commands,
except that parameters are separated by spaces, not commas. See the
Application Shell (ash) section of this Application Development Guide for
details.



Chapter 2: System Shell Commands 23

May 2000

Similarities to UNIX and DOS
CROS has many commands and features similar to UNIX and DOS.

If you are already familiar with one of them, you can use a CROS
command that is similar. For example, to list a directory in CROS,
you can use ls (a UNIX-like command for list directory) or dir (a DOS-
like command for list directory).

Command Names: CROS, UNIX, and DOS
The following table lists all CROS commands with similar commands
in UNIX and DOS. CROS, UNIX, and DOS commands are not always
identical. Check the alphabetical listings for full descriptions.

CROS UNIX DOS
ash — —
cd cd cd

chdir
chmod chmod attrib
cksum sum —
copy cp copy
cp cp copy
crosver — ver
date date date  +  time
del rm del

erase
dir ls dir

tree
df df chkdsk

mem
dir

edit ed edit
exit exit exit
help man help
kill kill —
ln ln —
ls ls dir

tree
md mkdir mkdir

md
mem vmstat mem
mkdev mknod —
mkdir mkdir mkdir

md
mkfifo mknod —
mksock mknod —



24 CROS and System Shell: System Shell Commands

May 2000

CROS UNIX DOS
more more more
mount mount —
msleep sleep —
mv mv rename

ren
move

ps ps —
pwd pwd cd
ren mv move

rename
ren

rm rm del
erase

rmdir rmdir rmdir
rd

shell sh
csh
ksh

command

shutdown shutdown -i0 —
siocfg stty mode
sync sync defrag
type cat type
unmount unmount —
ver — —
& & —

Path Separators
CROS allows both the / (forward slash) familiar to UNIX users and
the \ (backslash) familiar to DOS users as separators between
directories and files in a path. Since they are equally valid, they could
be mixed in a path.

CROS
(UNIX-style)

CROS
(DOS-style)

/app/test/test.r \app\test\test.r



Chapter 2: System Shell Commands 25

May 2000

Wildcards
The CROS system shell can handle simple wildcards. The special
characters recognized are:

* matches zero or more of any character

? matches exactly one of any character

For example, the string “bob*” matches “bob” “bobby” and
“bobbobbobbing”. The string “b?b” matches “bib”, “bob”, “byb” but not
“bxxb” or “bobs.”

Wildcard expansion works the same as in UNIX. When a command
line is typed, the shell expands wildcards before executing the
command. When the shell detects a ‘*’ or a ‘?’ wildcard character in
the command line, it searches for files that match the specified
pattern and replaces the pattern with the actual file names.

As an example, suppose that the following files are in our current
working directory:

bob.v3 bib.v3 babe.v3

bib.r temp.txt test/

test/temp.temp test/t.v3 test/q.v3

Then these command lines are expanded by the shell as follows:

ls b*3 ls babe.v3 bib.v3 bob.v3

ls t*/* ls test/t.v3 test/temp.temp test/q.v3

ls b?b* ls babe.v3 bib.r bib.v3 bob.v3

A good way to better understand wildcard expansion is to play with
the echo command; for example, “echo *” will echo the names of all
files in the current working directory.



26 CROS and System Shell: System Shell Commands

May 2000

General Command Format
Most CROS commands have the following general command line
format:

command [-options…]  param1  param2  param3 …

Where:

command the command name

-options... the options list; introduced by a – (dash) character.
Options may be appended together (like “-aRl”) or listed
individually (like “-a –R –l”).

param1… the other parameters to the command, separated by
spaces.



Chapter 2: System Shell Commands 27

May 2000

Detailed Descriptions
These are detailed descriptions of all system shell commands listed
alphabetically.

Where a command has two names, there is an entry for each. For
example, there is an entry for ls and an entry for dir. Details are only
at one entry. A cross-reference directs you from the other entry to the
one with details.

file_name
Description Runs the specified file. Running a robot application program from the

system shell is more efficient than running it from the application
shell.

Format The following short-forms are used in the next table:

xpath the path to the executable program file

xname the executable program file name

vpath the path to the variable file

vname the variable file name

File names can be entered according to any of the following formats:

xname program file name only
(uses variable file of same name)

xname:vname program file name with
variable file name

xname:vpath/vname program file name
with variable file path and variable file name

xpath/xname program file path and program file name
(uses variable file of same name)

xpath/xname:vname program file path and program file name with
variable file name

xpath/xname:vpath/vname program file path and program file name with
variable file path and variable file name

The .v3 extension is optional. The current working directory is the
default where the system begins searching for the file unless you
specify a path to another directory.

Examples test1 test1 with test1.v3

test1:alpha test1 with alpha.v3

test1:samples/beta test1 with (from samples directory) beta.v3

test/prep (from test directory) prep with prep.v3

test/prep:alpha (from test directory) prep with alpha.v3

test/prep:samples/beta (from test directory) prep with (from samples directory)
beta.v3



28 CROS and System Shell: System Shell Commands

May 2000

ash
 application shell

Description Starts up a new application shell.

The application shell interprets application commands.

Syntax ash [application_name [variable_file_name]]

Parameters Takes an optional application name parameter. If the application is
specified, then the variable file name can be optionally specified.

application_name the application to open when ash loads

variable_file_name the variable file to load into the database
with or without the .v3 extension

If no application name is specified, the shell prompts for the
application name. If no variable file name is specified, the shell loads
the variable file name with the same name as the application.

Examples ash test alpha use application “test” with v3 file “alpha.v3”
ash test test use application “test” with v3 file “test.v3”
ash test use application “test” with v3 file “test.v3”
ash prompt the user for which application to use

See Also exit (in application shell) exits from application shell

auto
 set autostart commands

Description The auto command is used to update the /conf/startup.sh file.  This
file is a list of commands that gets executed by the shell after the rc
(initialization) file, when the system first starts up.  The auto
command can be used to set the system to automatically launch a
program at start up for turnkey applications.

Syntax auto [-options] [command]
auto [-options]

Parameters The command takes two optional sets of parameters:

options An option. See the options list below.

command The system shell command to add to the conf/startup.sh
file.  If command is omitted, then the auto command
calls up the editor (edit).



Chapter 2: System Shell Commands 29

May 2000

These are the valid options for the auto command:

Option Description
-a append append command to the end of the startup.sh

file, or simply edit the existing file if command
is not specified.  (default)

-d delete simply delete the startup.sh file.  Used to
cancel a previously defined set of startup
commands.

-h
-?

help display a usage message

-x overwrite discard the existing startup.sh file and create
a new one.

Examples auto ls appends the “ls” command to the startup.sh file
auto edit the existing startup.sh file
auto –d delete the startup.sh file
auto –x ls create a new startup.sh file with “ls” in it

axst
 axis status

Description Continually displays low-level axis status information.  This
information is displayed as a set of 8 hexadecimal numbers, one per
axis.  The data is of diagnostic use only, and is not useful to general
users.

Syntax axst

Parameters This command takes no parameters.

Example axst

cd
 change directory

Description Changes the current working directory to the directory specified.

Syntax cd path

Parameters Takes one required parameter, specifying the absolute or relative path
to the directory to change to.

path any absolute or relative directory path

Paths can be absolute or relative; absolute paths start with either “/”
or “\” and specify the location of a directory from the root of the
directory tree.



30 CROS and System Shell: System Shell Commands

May 2000

Relative paths start at the current working directory. The following
special directory names are often useful in relative paths:

. refers to the current directory

.. refers to the parent of the current directory

Examples
cd test cd into the test directory, (which must be a child of the current

working directory.)

cd /dev cd into the dev directory, (which must be a child of the root of
the directory tree.)

cd \ cd into the root directory

cd
app\test

cd from the current directory into the app directory, and from
there into the test directory.

cd .. cd one level up in the directory tree into the parent of the
current working directory.

cd ../.. cd two levels up in the directory tree.

See Also pwd print working directory
ls (or dir) list contents of directory

chmod
 change modes

Description Changes the access modes of an object (file, device, fifo, or socket).

Syntax chmod modes object_names…

Parameters This command accepts two arguments: modes, which specifies how
the modes of the listed objects are to be changed, and object_names…
which is a list of object names.
The modes argument consists of a list of the following key letters,
possibly with + or – characters before them. The mode key letters are:

r permit reading from the object

w permit writing to the object

x permit executing the object

s mark this as a system object

The ‘+’ sign indicates that the following mode bits are to be set for
(added to) the object; the ‘-‘ indicates that the mode bits are to be
cleared (removed from) the object. If no ‘+’ or ‘-‘ appears, then the
access modes are simply set as indicated. For example:

+w add the w flag to the object

-xw remove the x and w flags from the object



Chapter 2: System Shell Commands 31

May 2000

rw set only the r and w flags; clear all of the others

-s+rw-x set the r and w flags; clear the s and x flags

Examples chmod  rwx  this_file
chmod  +w   that_fifo

See Also ls  -l lists access modes of entities

cksum
 checksum
Description Calculates and prints the checksum of a file. The checksum is a

number determined by a mathematical calculation on the bits of the
file, and can be used to compare files to ensure that they are
identical. Prints the hexadecimal checksum, the decimal integer
number of bytes of the file, and the filename. At present, the
checksum is a simple 32-bit sum of each of the 8-bit bytes in the file.

Syntax cksum file_name [file_name_2] [file_name_3]

Parameters Takes one or more parameters:

file_name the name of the file to check

Example cksum  sieve.r
Result 0x00006b8a  416  sieve.r

Example cksum  teachflo.r  teachint.r  teachloc.r
Result 0x000085db  788  teachflo.r

0x00009e23  912  teachint.r
0x0000704c  628  teachloc.r

compile
invoke the RAPL-3 Compiler

Allows the user to recompile RAPL-3 programs.

See r3c

copy
copy objects

 Copies the contents of one object to the contents of a second object.

See cp



32 CROS and System Shell: System Shell Commands

May 2000

cp
copy

 copy objects
copy objects

Description Copies the contents of one object to the contents of a second object. If
the second object does not exist, then it is created. If the second
object already exists, over-writes the existing contents of the second
object. This is similar to the operation of the copy command in DOS
and the cp command in Unix. Typically, copy is used to copy files; it
can also be used to copy a file to a device or to copy a file to a fifo.

Syntax cp source_object_name destination_object_name

cp source_object_name [source_object_name_2...]
destination_directory_name

Parameters To copy one object to another, cp takes two required parameters:
source_object_name the object to copy from (can include a path)

destination_object_name the object to copy to (can include a path)

 To copy one or more object to another directory, cp takes at least two
required parameters:
source_object_name the object to copy from

source_object_name_2 one or more additional objects to copy from

destination_directory_name the directory to copy to (can include a path)

Example cp    lab_test.r  lab.r
copy  alpha.r  alpha.v3  \app\trash

See Also ln makes a link to an object
rm (or del) removes (deletes) an object or link
mv (or move) moves or renames an object

crosver
 CROS version

Description Displays the version of the operating system (CROS) being used.

Syntax crosver

Parameters No parameters.

Example crosver
Result System type: ‘CROS on a C500’

Version: 1.11.424
Click size: 64
msec/tick: 10

See Also ver   (in the system shell)  displays version of system shell
ver   (in the application shell) displays version of application shell



Chapter 2: System Shell Commands 33

May 2000

date
 date
Description Displays or sets the current date and time.

Syntax date
date [yyyy mo dd hh mi ss]

Parameters To display the date, takes no parameters.
To set the date, takes six required space-separated parameters:

yyyy year 1970, 1971, ... 2037

mo month 1, 2, ... 12

dd day 1, 2, ... 31

hh hour 0, 1, ... 23

mi minutes 0, 1, ... 59

ss seconds 0, 1, ... 59

 All parameters are integer numbers. A first leading zero is optional
(00, 01, 02, ...). The date command performs some error checking for
correct combination of day with month or year.

Example date
Result Wed Jan l 00:00:00 1997

Example date 1997 07 01 15 30 00
Result the date is set to Tue Jul 1 15:30:02 1997

del
delete

 Deletes (removes) an object (file, device, fifo, or socket).

See rm

df
 disk free space

Description Displays the number of free bytes on the file system.

Single File System

For systems with a single file system like CROS on a C500, no
parameter is necessary.

Syntax df

Parameter This command takes no parameters.

Example df



34 CROS and System Shell: System Shell Commands

May 2000

Result . (mfs): 101440 bytes free (block size = 64)

Multiple File Systems

For systems with multiple file systems, CROS on Windows NT, any
directory in the desired file system must be specified.

Syntax df name

Parameter Takes an optional parameter:

name For the host file system or a mounted file system, any
directory name or file name in the desired file system

If no parameter is given, the default is used which is . (dot) for the
current directory.

Example df /app
Result . /app(hostfs): 72276992 bytes free (block size = 512)

See Also mount mounts a file system on a directory

/diag/cal
 recalibrate specified axes of the robot.

Description This command is used to recalibrate and home selected axes of the
robot. WARNING: the cal command will overwrite your existing
calibration files! The axes in question should be properly zeroed
before performing this procedure. Under normal operation you will
never have to recalibrate the robot.

Syntax /diag/cal [axes…]

Parameters Optionally takes a list of axes to recalibrate and home; if the list is
omitted, then all robot axes are recalibrated.

Example /diag/cal recalibrate and home all axes
/diag/cal 5 recalibrate and home axis 5

See Also home (in the application shell) home specified robot axes
home (in the system shell) home specified robot axes



Chapter 2: System Shell Commands 35

May 2000

/diag/calgrip
 recalibrate the servogripper

Description This command is used to recalibrate the servo gripper. WARNING:
the calgrip command will overwrite your existing servo gripper
calibration file! Under normal conditions, you will never have to
recalibrate the servogripper; this command is generally used to set up
the gripper when it is first installed.

The calgrip program opens the servo gripper and prompts for you to
enter the distance that the jaws are open (typical is 2.0 inches); then
the program closes the gripper and asks what distance the jaws are
open (typically 0.0 inches.) The program then calibrates the gripper
and exits.

Syntax /diag/calgrip

Parameters This command takes no parameters.

Example /diag/calgrip

See Also /diag/cal   (in the system shell) calibrates and homes robot
axes
/diag/cal   (in the application shell) calibrates and homes robot
axes
gtype (in the application shell) sets the type of gripper

/diag/configur
configure robot

 In earlier versions of CROS, the name for /diag/setup.

See /diag/setup

/diag/encres
 F3 encoder reset

Description Resets the absolute encoders on an F3 robot.

WARNING: this command is generally used in preparation to calibrating the
robot and is not used in normal operations. Please refer to the F3 operation
manual for details on the use of this command.

Syntax /diag/encres

Parameters This command takes no parameters.

Example /diag/encres
Result The F3 encoders are reset.



36 CROS and System Shell: System Shell Commands

May 2000

/diag/f3diag
 F3 diagnostics

Description This program allows the user to perform several F3 specific
diagnostics.

Syntax f3diag

Parameters The command takes no parameters.

Example f3diag
Result F3diag v. 2.19

Commands available:
(M)odule Detection (N)etwork Scan
(C)alibration Info (J)oint Limits
(H)elp (Q)uit
Command:M
Waist amp detected.
Wrist amp detected.
EOA-IO or SG-IO board detected.
A total of 3 modules detected.
Command:Q

/diag/f3pack
 F3 packing position.

Description This command is used prior to shipping an F3 robot, to place the
robot in its packing (curled-up) position.

Syntax f3pack

Parameters This command takes no parameters.

Example f3pack

/diag/setup
 robot setup.

Description This command asks the user a series of questions about the system
and robot and writes a new /conf/robot.cfg file based on the answers.

This command was called configur in early versions of CROS.

Syntax /diag/setup

Parameters This command takes no parameters.

Example Note that what the computer prints is in regular type;
sample user input is underlined.)

$configur



Chapter 2: System Shell Commands 37

May 2000

Result Robot Configuration

Are your coordinates in English (0) or Metric (1) units?
0
Your robot has 6 axes. How many additional axes are
connected to your controller?
1
Is the robot mounted on a track?(1=yes, 0=no)
1
Enter the positive travel limit of the track in inches.
35.5
Enter the negative travel limit of the track in inches.
–0.5
Do you have a servo gripper installed ?(1=yes, 0=no)
0

Robot is configured.
This may cause a PIC TIMEOUT ERROR and a LOSS OF ARM
POWER
Please restart controller to allow new settings to take
effect.

$

See Also /diag/cal   (in the system shell)         calibrates and homes robot axes
/diag/cal   (in the application shell)  calibrates and homes robot axes
gtype (in the application shell)   sets the type of gripper

/diag/xzero
 axis zero position registers

Description Zeros the position registers of a particular robot axis.

WARNING: this command is generally used in preparation to calibrating the
robot and is not used in normal operations.

Syntax /diag/xzero axis_number

Parameters There is one required parameter:

axis_number Which robot axis to zero the position registers of.

Example /diag/xzero 7

Result The position registers of axis 7 are set to zero.

See Also /diag/zero  zeros the position registers of all robot axes
/diag/cal calibrate and home robot axes



38 CROS and System Shell: System Shell Commands

May 2000

/diag/zero
 zero position registers

Description Zeros the position registers of all robot axes.

WARNING: this command is generally used in preparation to calibrating the
robot and is not used in normal operations.

Syntax /diag/zero

Parameters This command takes no parameters.

Example /diag/zero

Result The position registers of all robot axes are set to zero.

See Also /diag/xzero zeros the position registers of all robot axes
/diag/cal calibrate and home robot axes

dir
list directory

 Lists the contents of a directory

See ls

do
 do shell script

Description This command tells the shell to execute a text file containing a list of
system shell commands. The file should consist of shell commands,
one command per line, possibly interspersed with ‘#’ delimited
comments.

Syntax do script_file_name

Parameters There is one parameter:

script_file_name The name of the text file containing the shell
commands. The system will search for this file in
the current working directory and then in /bin.

Example Given a file test.sh that contains this:
# This is a comment
echo Hello
pause Hit any key to continue
echo Done.
# This is another comment

The “do test.sh” will print out the message “Hello” and “Hit any key
to continue”, then wait for the user to hit a key, and print out the
message “Done.”



Chapter 2: System Shell Commands 39

May 2000

See Also shell start up the system shell

echo
 echo a message to the console

Description Echoes a message to the console.  This is useful inside scripts.

Syntax echo [-n] [text…]

Parameters There are two optional parameters:

-n Do not print, go to a new line after printing the message;
leave the cursor right at the end of the message.

text… The text of the message to display.

Example echo This is a test

Results Displays the message “This is a test”, and moves the
cursor to the next line.

See Also do do a shell script
pause wait for user input

edit
 edit a text file

Description This command invokes the command line text editor.  edit can be
used to create and modify configuration and source files.

Syntax edit [-options] filename

Parameters The command takes one optional sets of parameters and one required
parameter:

options an option (see the list below)

filename the name of the file to edit

These are the valid options for the edit command:

Option Description
-n no menu do not display the editor help menu on startup.

-h
-?

help display a usage message

-l use default
command log

use the default command history log file
(/log/command.log) for inserting.  This allows
a program to dump out its command history to
a file and permits the editor to select lines
from that history list to insert.

-L filename use the specified same as –l, but loads a specific command



40 CROS and System Shell: System Shell Commands

May 2000

command log history log file.

Examples edit /conf/rc Edit the startup script file.
edit –n myprog.r3 Create and edit myprog.r3.
                                      Don’t display the editor help menu.

See Also pedit starts the pendant editor

exit
 exit the shell

Description Terminates the current shell. Takes one optional parameter, which is
the exit code to return to the parent process.

 If you have only one system shell running, the exit command exits
from that shell, but the init process starts up a new shell to ensure
that you always have communication with the system.

Syntax exit [code]

Parameters There is one optional parameter:
code The exit code to return to the parent process.

See Also shell starts a new system shell
exit (in the application shell) exits from the application shell

help
 help
Description Displays help on system shell commands. Displays the command

name, its parameters, and a brief description.

 You must be in the system shell to get help on commands that are
accessed only from the system shell. In the application shell, the help
command gives help on commands that are accessed from the
application shell.

Syntax help [command_name]

Parameters Takes one optional parameter:

command_name the command for which you want help.

 No parameter gives a list of all system shell commands.

Examples help ls
help shutdown
help

See Also help (in the application shell) displays help on ash accessible 
commands.



Chapter 2: System Shell Commands 41

May 2000

kill
 kill
Description Sends a specified signal to a set of processes. Typically this can be

used to terminate (kill) the processes.
By default, an INT (interrupt) signal (7) is sent, which is the
equivalent of pressing Ctrl E. The kill signal (1) is the only signal that
cannot be masked or caught by the target process; this signal can be
sent in extreme cases to terminate an errant process.

Syntax kill [ -signal] process_number…
Parameters

signal the signal name or number
process_number… a list of process id numbers

To obtain the process number and the process state, use the ps command.

Signals
Number Name RAPL-3

Symbol
Description Default

Action
1 KILL SIGKILL kill; cannot be caught or masked terminate

2 SEGV SIGSEGV segmentation violation terminate

3 SIGILL SIGILL illegal instruction terminate

4 FPE SIGFPE floating point exception terminate

5 SYS SIGSYS bad argument to system call terminate

6 ABRT SIGABRT abort terminate

7 INT SIGINT interrupt terminate

8 ALRM SIGALRM alarm clock terminate

9 HUP SIGHUP hang up terminate

10 PIPE SIGPIPE write to pipe, but no process to read it terminate

11 SOCK SIGSOCK write to socket, but no process to read it terminate

12 RPWR SIGRPWR robot power failed terminate

13 13 SIG13 user defined terminate

14 14 SIG14 user defined terminate

15 15 SIG15 user defined terminate

16 16 SIG16 user defined terminate

17 CHLD SIG17 child process died ignore

18 18 SIG18 user defined ignore

19 19 SIG19 user defined ignore

20 20 SIG20 user defined ignore

21 21 SIG21 user defined ignore

22 22 SIG22 user defined ignore

23 23 SIG23 reserved for CRS use ignore

24 24 SIG24 reserved for CRS use ignore



42 CROS and System Shell: System Shell Commands

May 2000

The effect of a signal on a process depends on what state the process
is in:

State

Signal
Number

RUN /
SLEEP /
WAIT

WIO
(Wait for
I/O)

IWIO
(Interruptible
Wait for I/O)

WSEM
(Wait for
SEMaphore)

WSOCK
(Wait for
SOCKet)

SIGKILL (1) to
SIGALRM (8)

interrupt no interrupt interrupt interrupt

SIGHUP (9)
SIGPIPE (10)

interrupt no no no no

SIGSOCK (11) interrupt no no no interrupt

SIGRPWR (12) to
SIG22 (22)

interrupt no no no no

SIG23 (23)
SIG24 (34)

interrupt no no no interrupt

The “interrupt” entries denote that the operation can be interrupted
by the given signal. For example, an I/O read (IWIO) can be
interrupted by a SIGALRM.
The behaviour of signals SIG23 and SIG24 may change in the future
since they are reserved for CRS use.

Examples kill -9 64 65 send a SIGHUP to processes 64 and 65
kill –HUP 22 send a SIGHUP to process 22

See Also ps displays process numbers and process states

lcd
 display text on or clear the front panel LCD display.

Description The lcd command allows messages to be displayed on the C500C
front panel LCD (liquid crystal display).  It also allows clearing the
display.

Syntax lcd [first_line [second_line]]

Parameters There are two optional parameters to this command:

first_line text to appear on the first (top) line of the
display.

second_line text to appear on the second (bottom) line of
the display.

If no parameters are given, lcd clears the lcd display.

Examples lcd
clear the lcd display

lcd “Hello, World!”
display the string “Hello, World!” on the first line of the display,

      leaving the second line unchanged.
lcd Hello, World!

display “Hello,” on the first line and



Chapter 2: System Shell Commands 43

May 2000

      “World!” on the second line of the display.

ln
 link

Description Makes a hard link to an object (file, device, fifo, or socket). Can be
used to create another name for an object. Can be used to rename an
object, if the ln command is followed by an rm of the original name.

 If all links to an object (like a file) are removed (with rm, for example),
then the object ceases to exist.

 Hard links are presently supported only within a CROS-500 mfs
filesystem or a CROSnt CFS filesystem; in particular, the CROSnt
hostfs (which allows access the host filesystem) does not support
hard links, as Windows NT™ itself does not support hard links.

Syntax ln source_object target_object_name

Parameters Takes two required parameters:

source_object the object identified by an existing name

target_object_name the new name

Examples ln sample_alpha.v3 sample_beta.v3

See Also rm (or del) breaks a link
cp (or copy) copies an object
mv (or move) moves or renames an object

ls
dir

 list directory
list directory

Description Lists the directory, sub-directories, entities, and/or information
about them depending on optional parameters.

Syntax ls [-options] [directory_name]

Parameters Takes two optional parameters:

options the options list (see below)

directory_name the name of a specified directory

If no option is given, lists the contents by name.
If no directory name is given, lists the current directory.



44 CROS and System Shell: System Shell Commands

May 2000

Option Description
-a all lists all including any normally hidden files

which begin with a . (dot), the current
directory, and the parent directory

-I inode
number

lists the inode (internal node; the index of
where object information is actually
stored) for each sub-directory or object

-l
(the letter l)

long lists the current or specified directory with
details as described in the output sample
below

–R Recursive lists recursively (lists the contents of all
sub-directories, sub-sub-directories, etc.
starting at the specified directory)

–1
(the number 1)

1 (single) lists the current or specified directory, one
sub-directory or object per line

Note that the options can be combined:
Examples ls -l

ls -R
ls -aRl /temp
ls -R -i /dev

Long Option

The long option is described below with example command, resulting
output, and description of output categories.

Example ls -l

Result The output displays without any column names.

file mode links size or
device

date name

d---rwx   2       160   Jul 1 12:00    ./

d---rwx  12       416   Jul 1 12:00    ../

-f-Sr-x   1      9320   Jul 1 12:00    fastacid

-f-Sr-x   1     35468   Jul 1 12:00    robotsrv

-f--r-x   1     47716   Jul 1 12:00    stpv3

Description The long option gives five columns of information: file mode, links,
size or device, date, and name.

file mode

File mode contains seven sub-columns of information: type of
object, flash location (primary or secondary), system ownership,
and mode of protection (read, write, or execute).



Chapter 2: System Shell Commands 45

May 2000

File Mode

Type of Flash Location System Mode of Protection
Object Primary Secondary owner-

ship Read Write Execut
e

d
directory f F S r w x

–
file in

primary
flash

in
secondary
flash

a
system
object

can
read

can
write

can
execute

v
device – – – – – –

p
pipe not in not in not a cannot cannot cannot
s
socket

primary
flash

secondary
flash

system
object

read write execute

Type of object is always indicated (each object is one of the listed
types). Other indicators use a letter for yes/on and a – (dash) for
no/off.

links

Indicator of the number of directory entries that refer to this
object.

size or drivers

Size of file or identifiers for driver.

Type of Object Information Given

file or directory size in bytes

device major and minor driver codes for the device driver

date

Date and time of last modification.

name

Name of object or directory.

See Also cd changes current working directory
chmod changes access mode of an object

md
 make directory

 Makes a new directory.

See mkdir



46 CROS and System Shell: System Shell Commands

May 2000

mem
 memory available

Description Displays a summary of free space in memory and the percentage of
fragmentation of that space. Zero percent indicates that free memory
is completely contiguous.

Syntax mem

Parameters This command takes no parameters.

Example mem
Result 152512 bytes free

5% fragmentation

See Also sync flushes file buffers and defragments memory

mkdev
 make device

Description Makes a new device. A device is an object in the file system (usually
in the device directory) which is necessary to communicate with
peripherals. These peripherals are also called devices.

Most devices correspond to external hardware components like those
connected through the GPIO or the front communication port. In
addition, CROSnt includes some special purpose device drivers
supporting communication between CROSnt programs and native
WindowsNT™ programs.

Every device has a device driver that instructs CROS how to perform
various communication functions with the external device. The device
entry in the file system, created by mkdev, tells CROS which device
driver to use when communicating with the external device through
the internal device driver software.

Syntax mkdev device_name major minor

Parameters Takes three required parameters:

device_name the name of the device

major the major identifier of the device driver

minor the minor identifier of the device driver

Examples mkdev \dev\terminal 1 1

Same As RAPL-3 mknod() makes device, fifo, or socket

See Also chmod changes protection mode



Chapter 2: System Shell Commands 47

May 2000

mkdir
md

 make directory
make directory

Description Makes new directories.

Syntax mkdir directory_name…

Parameters Where:

directory_name the name of the directory

Examples mkdir lab
mkdir lab\analysis

See Also rmdir removes (deletes) a directory

mkfifo
 make fifo
Description Makes a new fifo. A fifo is a queue-like object for one-way

communication between processes. It causes items to be taken out of
the queue in the order that they were put in (first in, first out).

Syntax mkfifo fifo_name

Parameters Takes one required parameter:

fifo_name the name of the fifo

Examples mkfifo \dev\propos

Same As RAPL-3 mknod() makes fifo, device, or socket
pipe() creates a private set of fifos

See Also chmod changes protection mode



48 CROS and System Shell: System Shell Commands

May 2000

mksock
 make socket

Description Makes a new socket. A socket is an object for two-way
communication between processes.

A socket supports a client-server configuration for one server and
many clients with the sockets like a set of two-way pipes connected to
the server hub and the clients unable to talk to each other.

Syntax mksock socket_name

Parameters Takes one required parameter:

socket_name the name of the socket

Examples mksock \dev\carousel

Same As RAPL-3 mknod() makes socket, fifo, or device
socketpair() makes a private pair of sockets

See Also chmod changes protection mode

more
 display more and more of a file

Description Displays the contents of the file at the terminal window 20 lines at a
time. More accurately, copies the contents of the file to the console
screen.

Syntax more file_name

Parameters Takes one required parameter:

file_name the name of the file (absolute or relative path)

Examples more \log\acid.log



Chapter 2: System Shell Commands 49

May 2000

mount
 mount file system

Description Mounts a second file system at a point on the first file system.
Mounting a file system allows access to its files which are on a
different drive, device, or computer from the primary file system. The
mount point becomes the root of the second file system.

 The mount command can only be used with systems using multiple
file systems, like those running CROS-NT.

Syntax mount [–r] hostfs mount_point filesystem_to_mount

Parameters Takes one optional and two required parameters:

–r set mode to read only; CROS will not be able
to write into the mounted filesystem.

hostfs this keyword denotes that a host filesystem
is being mounted under the CROS
filesystem.

mount_point where under the CROS filesystem to mount
the hostfs filesystem. The mounted
filesystem will be visible under this
directory, but any objects currently in the
directory will become inaccessible as long as
the filesystem is mounted.

filesystem_to_mount this parameter specifies what part of the
host filesystem to mount. Typically a full
DOS-style path.

Examples mount -r hostfs/mnt c:/tmp
mount hostfs/mnt c:/mydir/results

See Also unmount unmounts file system

msleep
 millisecond sleep
Description Puts the shell to sleep for a number of milliseconds. Similar to the

effect of an msleep() call or delay() call within a program.

Syntax msleep number

Parameters Takes one required parameter:

number an integer specifying the number of milliseconds

Examples msleep 1000 # sleep for 1 second



50 CROS and System Shell: System Shell Commands

May 2000

mv
ren

 move object
rename object

Description Moves or renames an object. At present you cannot move a directory.

Syntax mv old_object_name new_object_name
mv object_names… directory

Parameters To rename an object takes two required parameters. If the new name
already exists, the system displays a message and does not overwrite
it.

old_object_name the name being deleted

new_object_name the name being created

 To move entities from one directory to another, takes at least two
required parameters:

object_names… a space-separated list of the objects being moved

directory the directory to move the objects into

Examples mv lab_test lab_1
move \app\test\dispense.r \app\dispense\dispense.r
mv beta.r beta.v3 \app\test

See Also cp (or copy) copies an object
ln makes a link to an object
rm (or del) removes (deletes) an object or link

odometer
 robot armpower odometer
Description This command allows the user to examine the robot armpower

odometer, which gives how long the robot armpower has been on
since firmware installation.

Syntax odometer

Parameters None.

Example odometer
Result The robot has been running for 123.4 hours.

panel
 front panel menu shell

Description This command uses the front panel F1 and F2 buttons and the lcd
display to provide a simple menu for selecting and executing shell
commands.



Chapter 2: System Shell Commands 51

May 2000

Syntax panel [-options] selection1 [selection2 …]
panel [-options] –f filename

Parameters The arguments to panel consist of a (possibly absent) set of options
and a required list of menu selections.  The menu selections can be
stated on the command line (selection1…) or may be found in a file (-f
filename).
The selection items all look like this:

label=command
or

label:command
In both cases, the label is the title shown on the lcd display for the
selection; the command is the shell command that is executed if the
item is selected by the user.  If the selection uses the ‘=’ symbol (the
first case) then panel will permit the user to abort the command from
the front panel via the F1 key.  If the ‘:’ symbol is used, then the
command cannot be aborted from the panel.  This can be used to
allow panel to call itself for nested menus.
There is one special command symbol, exit, which, if chosen by the
user, causes panel to terminate.
The valid options are:

Option Description
-d label specify

default menu
item

Specifies that if the front panel buttons
have not been touched, the menu item
with label label should be executed after
the timeout specified with the –T option
has elapsed.

-f filename read items
from file

Reads the list of selection items from a
file.  It is expected that they are listed one
item per line in the file.

-h
-?

help Display a usage message.

-n don’t take
control of the
robot

Normally, panel takes control of the robot
when it starts up and after each command
has executed (for safety reasons.)  The –
n option disables this behaviour.

-s sort Sort all of the selection entries
alphabetically, by their labels.

-T nnnn set timeout Specifies that if the panel has not been
touched, then after nnnn seconds the
default action will be taken if the –d option
has been supplied.

-t title set title Sets the title shown on the lcd display
when panel first starts up.

Examples panel –t test Ready=ready Home=home “Rotate=motor 1 100”
Exit=exit

This will display a menu with entries labelled “Ready”, “Home” “Rotate”
and “Exit”.  If the user selects “Ready”, the ready command will be executed,
and so forth.  Note that the selection item with the motor command must be



52 CROS and System Shell: System Shell Commands

May 2000

placed in quotes so that panel knows that it is just one item altogether.

panel –T 120 –d Startup Startup=myapp Home=home Exit:exit
This displays a 3 item menu with “Startup”, “Home” and “Exit” as the

labels.  If the front panel is not touched, after 120 seconds the “Startup”
selection will execute (running the “myapp” command.)

panel –f /conf/panel.cfg
Load menu items from the specifed file (which is, in this case, a sample

file provided with the system.)

ps
 process status

Description Displays the current status of every process on the system.

Syntax ps

Parameters none.

Example ps

Sample Result
pid ppid status flags prio time  mem command

 52    8 RUN ---r  2 0.120 7.43750K ps

  7    6 READY t-pr  2 1.72e+3 11.3750K /sbin/robotsrv

  6    1 READY t-pr  2 4.66e+3 11.3750K /sbin/robotsrv

  5    3 IWIO --pr  2 3.28 13.4375K /sbin/fastacid

  4    3 READY --pr  2 17.3 13.4375K /sbin/fastacid

  3    1 WSEM --pr  2 0.683 13.4375K /sbin/fastacid

  8    1 WAIT --pr  2 12.8 10.5000K shell

  1    0 WAIT --p-  2 0.138 4.00000K (init)

System has been running for   1933 seconds

Description The ps command gives nine columns of information: pid, ppid, status,
flags, prio, time, slip, mem, and command.

pid
process identification number
The identification number of the process. Assigned by the
operating system. During a session, each new process is assigned
a new number.

ppid
parent process identification number
The identification number of the parent process. The parent
process is the process that initiated the process identified by pid.

status



Chapter 2: System Shell Commands 53

May 2000

process status
The process is in one of the following states.

IWIO interruptible, waiting for input/output
READY ready to run, not currently running
RUN currently running (executing)
SLEEP waiting for sleep (time delay) to elapse
STOP execution stopped for diagnostic purpose
WAIT waiting for child process to finish running
WIO waiting for input/output
WSEM waiting for semaphore
WSOCK waiting to send or receive a message on a socket
ZOMB zombie: process has terminated, but the table entry

exists until the parent task deletes it from the
process table

flags
attribute flags
Indicators of attributes of the process. The first two are used for
CRS testing.

t timed out of wait; not yet revived
I interrupted; not yet re-started
p privileged: can change its priority above normal; can

mount and unmount directories
r RAPL-3 process, not a binary process

prio
priority level
The indicator of the level of priority for processing. Higher priority
processes get CPU time before lower priority processes.

1 high
2 normal
3 low

time
process time
The total time the process has been executing.

mem
memory used
Amount of memory used in Kbytes.

command
command name
The name of the process when called by the user at the prompt or
by another process.

system running time
The total time the system has been running during this session,
expressed in seconds. Large numbers of seconds are expressed in
exponential notation, like 2.3e+5

See Also kill terminate a process



54 CROS and System Shell: System Shell Commands

May 2000

pause
 pause for the user to hit the return key

Description Optionally displays a prompt on the console and waits for the user to
hit the return key. This is useful inside scripts.

Syntax pause [-n] [text…]

Parameters There are two optional parameters:

-n Do not print. Go to a new line after printing the
message; leave the cursor right at the end of the
message.

text… The text of the message to display before waiting for
user input.

Example pause –n Press ENTER to continue:

Results Displays the message “Press ENTER to continue:”, and
leaves the cursor next to the “:”. Waits for the user to
hit the return key, then exits.

See Also do do a shell script
echo echo a message to the console

pedit
 pendant edit
Description This command invokes the teach pendant text editor.  pedit can be

used to create and modify configuration and source files.

If no filename is specified, the pendant displays files to edit.

Syntax pedit [filename]

Parameters The command takes one optional parameter:

filename the name of the file to edit.

Examples pedit /conf/rc Edit the startup script file.

pedit Start the pendant editor.

See Also edit starts the terminal editor.



Chapter 2: System Shell Commands 55

May 2000

pwd
 print working directory

Description Displays (prints to terminal screen) the current working directory.
Displays the full absolute path.

Syntax pwd

Parameters Takes no arguments.

Example pwd

Results /
/dev
/app/test

See Also cd changes current working directory
ls  (or dir) lists contents of directory

r3c
compile

 invoke the RAPL-3 compiler

Description The r3c command allows the user to recompile RAPL-3 programs.
There are a great number of command line options, many of which
are of interest only in very special circumstances.

Syntax r3c [-options} file1.r3 [file2.r3…]

Parameters There are two sets of parameters:

options options, from the table below.

file1.r3… a list of files to compile.

The most common options are:

Option Description
-h
-?

help Display a complete usage message for
the compiler, listing all options.

-L libname use library Search the specified library for

-l line numbers Force line number information to be
included in the output file, even if
stripping all symbols (see –s and –x,
below.)

-o filename specify output
file name

Causes the compiled file to be written to
filename instead of to the default name.
(The default output name for file “x.r3” is
“x”.)

-P pipe Use pipes instead of temporary files
when compiling (saves file space during



56 CROS and System Shell: System Shell Commands

May 2000

Option Description
the compile.)

-s strip symbols Strip all symbols from the output file (to
save space)

-v verbose Be verbose when compiling.

-Wall warn on all Generate all possible warnings about
questionable code.

-Wmax maximum
warnings

Warn on even remotely questionable
code.

-Wnone warn on none Generate no questionable code
warnings.

-x exclude
symbols

Exclude all symbols that are neither
global nor exported.  Used to minimize
the size of a library.

Examples r3c myprog.r3
compile myprog.r3, producing output file “myprog”

r3c –Wall –o test fred.r3
compile fred.r3 with all warnings turned on, producing

output file “test”

rc1
 RAPL-3 compiler pass 1
Description The rc1 program is the main pass of the RAPL-3 compiler.  It is not

generally accessible from the command line, but is instead called by
the r3c compiler driver program.

Syntax rc1 [-options][filename]

Parameters There are two optional parameters:

options options, from the table below.

filename name of the source file.  If this is omitted,
then the compiler reads source from the
standard input.

The most common options are:

Option Description
-? help Display a complete usage message for

the compiler, listing all options.

-L libname use library Search the specified library for

-l line numbers Force line number information to be
included in the output file, even if
stripping all symbols (see –s and –x,
below.)



Chapter 2: System Shell Commands 57

May 2000

Option Description
-o filename specify output

file name
Causes the compiled file to be written to
filename instead of to the default name.
(The default output name for file “x.r3” is
“x”.)

-s strip symbols Strip all symbols from the output file (to
save space)

-v verbose Be verbose when compiling.

-Wall warn on all Generate all possible warnings about
questionable code.

-Wmax maximum
warnings

Warn on even remotely questionable
code.

-Wnone warn on none Generate no questionable code
warnings.

-x exclude
symbols

Exclude all symbols that are neither
global nor exported.  Used to minimize
the size of a library.

Example rc1 –L/lib/syslib.r –L/lib/robotlib.r –Wall –o myprog
myprog.r3

Result The program myprog.r3 is compiled with warnings turned on
and with the libraries syslib and robotlib available to
the program.

See Also r3c, rpp

ren
 rename object

 Moves or renames an object.

See mv

rm
del

 remove
delete

Description Removes (deletes) a reference to a set of objects (files, devices, fifos, or
sockets). When all references to an object have been deleted, the
object ceases to exist.

Syntax rm object_names…

Parameters Takes one parameter:

object_names… a space-separated list of objects to be removed



58 CROS and System Shell: System Shell Commands

May 2000

Examples rm test.r

See Also ln makes a link to an object
cp  (or copy) copies an object
mv  (or move) moves or renames an object

rmdir
 remove directory

Description Removes (deletes) a directory. Only empty directories may be deleted;
an error message will be displayed if one attempts to remove a
directory that is not empty.

Syntax rmdir directory_names…

Parameters Takes one required parameter:

directory_names… a space separated list of the directories to be deleted.

Examples rmdir temp_test

See Also mkdir (or md) makes a directory

rpp
 RAPL-3 pre-processor

Description The rpp program is the part of the RAPL-3 compiler that handles
.define macros and .ifdef conditionals.  It is not generally accessible
from the command line, but is instead called by the r3c compiler
driver program.

Syntax rpp [-options] [infile [outfile]]

Parameters  There are three options parameters:

options a set of options, from the table below

infile input file name (input is taken from the
standard input if this is omitted.)

outfile output file name (output is sent to the
standard output if this is omitted.)

The most common options are:

Option Description
-?
–h
–H

help Display a complete usage message for
the compiler, listing all options.

-L no line
numbers

Disable the automatic inclusion of line
number information in the output file.

-Dname
-Dname=value

define
symbol

Has the same effect as placing a
“.define name 1” or “.define name value”
directive at the start if the input file.



Chapter 2: System Shell Commands 59

May 2000

Option Description
Note that if no value is given, the value
is defined to be “1”.

Example rpp myprog.r3 myprog.out
Result The RAPL-3 program myprog.r3 will be preprocessed and the

output placed in myprog.out.

shell
 system shell
Description Starts a new system shell from a system shell or from an application

shell. The system shell interprets system commands.

Syntax shell

Parameters Takes no parameters.

Examples shell

See Also exit terminates a shell
ash starts a new application shell

shutdown
 shut down
Description Shuts down the system in a controlled fashion. The system should

always be shut down before turning off the controller power.

Failure to shut down before power off can result in loss of all data on the
controller.

Syntax shutdown [-option] when

Parameters Takes one optional parameter and one required parameter:

option optional actions to take when shutting down

-rebuild invalidates the current file system and rebuilds the file
system at the next start up. This erases all data in the
memory file system and forces its contents to be reset to
factory defaults. Do not execute this option unless
absolutely necessary.

when the time when the system will be shut down

now immediately

Examples shutdown now shutdown normally
shutdown -rebuild now shutdown & erase memory contents



60 CROS and System Shell: System Shell Commands

May 2000

siocfg
 serial input/output configuration

Description Changes the configuration of the serial ports.

The C500C controller has a total of four configurable serial ports:
ports 0 and 1 (/dev/sio1 and /dev/sio1) are available for application
use, port 2 (/dev/sio2) is reserved for the teach pendant, and port 3
(/dev/sio3) is used for the console. 

The C500 controller only has two configurable serial ports: port 0
(/dev/sio0) is reserved for the teach pendant and port 1 (/dev/sio1) is
used for communications with the console.

CROSnt supports up to 64 serial ports: com1 corresponds to port 0
(/dev/sio0), com2 corresponds to port 1 (/dev/sio1), etc.

Be careful when changing the console port; if this gets set so that you
can no longer communicate with the robot, then the only way to
recover is to restore the C500C controller to its most basic port
settings by holding down the F1, F2, Pause/Continue, and Home
buttons during the controller’s boot-up cycle. If you perform a reset to
basic settings, the console port reverts to SIO0 on the back of the
controller.  You will need a null modem serial cable to connect your
console to SIO0.

port association and baud rateserial
port C500 C500C (standard) C500C (reset)
sio0 pendant, 19200 57600 console, 57600

sio1 console, 38400 57600 57600

sio2 N/A pendant, 19200 pendant, 19200

sio3 N/A console, 57600 57600

Syntax siocfg -c port [-b baud] [-d data] [-p parity] [-s stop] [-v]

Parameters Only the –c parameter is required. The parameters are:

-c port com port identification number of port to be
configured

-b baud baud rate 300, 600, 1200, 2400, 4800, 9600, 19200,
38400, 57600 (C500C), or 115200 (C500C)

-d data data length 5, 6, 7, or 8 bits

-p parity parity 0 = none; 1 = odd; 2 = even

-s stop stop bits 1 = 1; 2 = 2

-v be verbose

Examples siocfg -c 1 -b 38400 -d 8 -p 0 -s 1
siocfg -c 8 -b 9600
siocfg -c 9 -d 7



Chapter 2: System Shell Commands 61

May 2000

sync
 synchronize filesystem buffers

Description Synchronizes (flushes) filesystem buffers in CROS-NT and
defragments memory in CROS-NT and CROS-500.

 For CROS on a C500, primarily used to defragment memory.

For CROS on NT, the system buffers are flushed. In other words, any
information that CROS has not written to storage is written out.

Syntax sync

Parameters Takes no parameters.

Examples sync

See Also mem displays fragmentation of free space in memory

touch
 touch file modification times

Description The touch command changes the modification time of a file to the
current time.  It can be used, for example, to force programs like ash
to rebuild the v3 file for an executable.

Syntax touch file1 [file2…]

Parameters The touch command accepts a list of files to set the timestamps of.

Example touch myprog
Result The timestamp of myprog is set to the current time. If

ash is used to run myprog, ash will detect that myprog’s
v3 file is older than the program, and will use v3make to
rebuild the v3 file.

unmount
 unmount file system

Description Unmounts a second file system from the mount point.

 The mount and unmount commands can only be used with systems
using multiple file systems, like those running under CROS-NT.

Syntax unmount mount_point

Parameters Takes one required parameter:

mount_point the mount point of the file system to be dismounted

Examples unmount /mnt

See Also mount mounts a file system



62 CROS and System Shell: System Shell Commands

May 2000

v3make
 make or update a v3 file for a program

Description The v3make command creates or updates (if the v3 file already
exists) the v3 file for a RAPL-3 executable.  It is generally not used
directly by the user, but is instead run automatically from ash.

Syntax v3make [-options] exec_filename

Parameters There are two sets of parameters, one of which is required:

options a set of options, from the table below

exec_filename the name of the executable to construct /
update the v3 file for.

The valid options are:

Option Description
-?
–h

help Display a usage message for program.

-an add missing /
no adjust

Add any missing variables to the v3 file;
do not adjust any variables whose types
have changed. (this is the default
mode.)

-af add missing /
fix changed

Add any missing variables to the v3 file;
attempt to fix any variables whose types
have changed. [currently
unimplemented]

-ai add missing /
interactive fix

Add any missing variables to the v3 file;
ask the user about fixing any variables
whose types have changed. [currently
unimplemented]

-ar add missing /
replace

Add any missing variables to the v3 file;
replace variables whose types have
changed (causing their old values to be
lost.)

-d delete Delete any v3 variables that aren’t
needed.

-o filename output file Use filename as the v3 file instead of
automatically constructing the name
from the exec_filename.

-r replace Just replace any v3 file that currently
exists; all data in the old file is lost.

-v verbose be verbose

-V version print v3update’s version string and exit.

-w warnings give extra warnings.

Example v3make –an myprog



Chapter 2: System Shell Commands 63

May 2000

Result Scans myprog.v3 and checks it against the program myprog.
Any missing variables will be added to myprog.v3, while
variables with changed types will result in error
messages.

See Also ash

ver
 version

Description Displays the version of the system shell being used.

Syntax ver

Parameters Takes no parameters.

Examples ver
Result CROS System Shell -- $Revision: 1.15 $

See Also crosver displays version of CROS
ver  (in the application shell) displays version of application shell



64 CROS and System Shell: System Shell Commands

May 2000


	Title Page
	Contents
	CHAPTER 1
	Introduction

	CHAPTER 2
	The Basics
	The Operating System: CROS
	The System Shell
	Running CROS
	Accessing the System Shell
	Using the Shell: Basics
	Working With Directories
	Working with Files
	Accessing System Tools and Applications
	Installing CROS on the PC
	Installing CROS on the Controller


	CHAPTER 3
	System Shell Commands
	Categories of Commands
	General Command Format
	Detailed Descriptions



