
Application Shell
ASH

UMI-R3-161

ii 99-05-06

Application Shell (ASH)
Revision

Number History Date

001 First release as UMI-R3-161.
CROS 1.16 for C500C.

99-05

99-05-06 iii

Contents

Chapter 1.. 1

Introduction ... 1

Chapter 2.. 3

ASH Basics... 3
ASH Commands .. 3
Repeating Commands ... 4
Command Completion ... 4
Getting Help ... 4

Listing Help Topics help .. 4
Displaying Help on a Command ... 4
Reading the Entire Help File .. 4

Understanding the Application Shell .. 5
Applications .. 5
Files .. 5
Teachable Variables ... 5
Database ... 5
Variable Files .. 6
Directories .. 6
Multiple Applications ... 6
Multiple Files .. 6
Robot Motion ... 7

Running an Application Shell .. 8
Starting an Application Shell ASH ... 8
Exiting From an Application Shell exit, quit 9
Running Another System Shell shell .. 10
Checking Application Shells ps .. 10
Checking the Version of ASH ver ... 10

Loading and Refreshing the Database .. 11
Loading the Default Variable File ... 11
Loading a Specific Variable File .. 11
Loading Another File ... 12
Refreshing the Database refresh .. 12

Working with Variables ... 13
Listing Variables list ... 13
Making New Variables new ... 13
Teaching Variables here, set ... 16
Displaying Values of Variables print or ? 19
Deleting Variables erase, eraseall .. 20

Merging Data .. 21
Preparing the Database erase & eraseall 21
Adding Teachables From Another File merge 21
Cleaning Up the Database erase ... 22

Saving Data .. 23
Automatic Saving .. 23
Saving to a Specific File save .. 23
Saving to Multiple Files ... 23

Configuring the Arm ... 24
Homing the Arm home .. 24
Getting Arm Data w0, wcmd, w1, w2, wact, w3, w4, wend, w5 24

iv 99-05-06

Preparing to Move base, tool, griptype_set, speed........................... 24
Moving the Arm .. 25
Transferring Control ... 26

Opening an Application ... 26
Securing Control at the Pendant .. 26
Transferring from ASH to the Pendant pendant 26
Transferring from the Pendant to ASH ... 26
Securing Control by a Program .. 27
Understanding Control .. 27

Running an Application... 28
Running the Default Program run ... 28
Running Any Program filename ... 28
Running from the System Shell ... 28
Running in the Background & ... 29

chapter 3... 31

Application Shell Commands .. 31
Categories of Commands ... 32
Detailed Descriptions .. 35

file_name .. 35
? ... 36
! .. 36
accel ... 36
align ... 37
ampstat .. 37
amp_status ... 37
appro, appros .. 38
arm ... 39
arm_status .. 39
armpower .. 40
armstat ... 40
base .. 40
base_set .. 41
calrdy ... 41
cfg_save .. 42
clrerror ... 42
depart, departs .. 43
erase ... 43
eraseall ... 44
exit ... 44
finish .. 45
gc ... 45
gclose .. 45
go ... 45
gopen .. 45
grip ... 45
gripdist_set ... 46
grip_close .. 46
grip_open .. 47
griptype_set ... 47
gtype ... 48
help .. 48
here .. 48
home .. 49

99-05-06 v

input ... 50
joint .. 50
limp .. 51
linacc .. 51
linacc_set .. 51
linspd ... 52
linspd_set.. 52
list .. 53
lock ... 54
merge .. 54
motor .. 55
move, moves ... 55
new ... 56
nolimp .. 57
online ... 57
output ... 58
pendant .. 58
pitch, pitchs .. 59
print ... 59
quit ... 60
ready .. 60
refresh .. 60
robotver .. 61
roll, rolls ... 61
rotacc ... 62
rotacc_set .. 62
rotspd ... 62
rotspd_set ... 62
run ... 63
save .. 63
servoerr .. 64
set .. 64
speed .. 65
stance ... 66
stance_set ... 67
tool ... 67
tool_set ... 68
tshift ... 68
tx, txs ... 69
ty, tys ... 69
tz, tzs .. 70
unlock .. 70
use ... 71
w0 .. 71
w1 .. 71
w2 .. 72
w3 .. 72
w4 .. 72
w5 .. 72
wact .. 73
wcmd .. 73
wend ... 74
wgrip .. 75
wshift .. 75
wx, wxs ... 76

vi 99-05-06

wy, wys ... 76
wz, wzs ... 77
ver .. 77
xrot, xrots ... 77
yaw, yaws ... 78
yrot, yrots ... 79
zrot, zrots .. 79

Features ... 81
& .. 81

System Shell Commands ... 82
Accessible from ASH .. 82
Not Accessible from ASH .. 83

1

99-05-06

C H A P T E R 1

Introduction

With the application shell (ASH), you can teach locations, modify variables
and values, monitor arm status, and move the arm with robot motion
commands. You can also run an application.

The application shell provides a command line interface, interpreting input
from the keyboard and output to the terminal screen. It is the command-line
equivalent of the teach pendant.

2 Application Development Guide: Application Shell (ash)

99-05-06

3

99-05-06

C H A P T E R 2

ASH Basics

This is a quick summary of the basics of ASH.

Topic Command Comments

Starting ASH Starts the application shell.

Applications Create a separate application for each pair of
program and variable files, unless you know how to
handle multiple files in an application.

Updating refresh Updates the database from a new program file. Use
this after sending a new program file.

Motions move Caution. Use small increments and slow speed. The
arm will try to complete any command as specified.

Teaching here
set

Teach locations with here after positioning the arm.
Set values to non-location variables with set.

Control pendant Transfers control from ASH to the teach pendant.
At the pendant, Shift + ESC transfers control back to
ASH.

Running run Runs the default application: default program file
with default variable file.

Getting Help help Lists all commands and descriptions.

Exiting exit Exits the application shell.

ASH Commands
This chapter, The Application Shell (ASH), outlines the functionality of the
application shell and many of the typical procedures you perform using it.

The next chapter, Application Shell Commands, details each command.

4 Application Development Guide: Application Shell (ash)

99-05-06

Repeating Commands
The application shell remembers the last 25 lines used at the command line
prompt. To re-display previously typed lines, press the up arrow for earlier
lines and the down arrow for later lines.

Note: If you have more than one shell running at one time, each shell
remembers the lines used for that shell.

Command Completion
The application shell has command completion. Pressing the tab key
multiple times causes a list of possible completions to be shown. If you type
enough letters to distinguish a specific command, pressing the tab key
completes the command.

Getting Help
The application shell has built-in help. To access ASH help, you must be in
ASH. The ASH help cannot be accessed from the system shell.

Listing Help Topics
help
To display the list of help topics, type the help command with no parameters.

help

Displaying Help on a Command
To display help on a specific command, type help followed by the command
name.

help set

help joint

There may be a delay of a few seconds until help is displayed.

Reading the Entire Help File
The ASH help file is a text file in the \lib directory and can be viewed with
the system shell’s type or more command.

more \lib\ash.help

In the file, the @@ symbols separate sections displayed by the help function.

Chapter 2: ash Basics 5

99-05-06

Understanding the Application Shell
This section explains some of the basic concepts of the application shell and
how the shell works.

Applications
An application is a specific set of tasks that you have programmed the robot
to perform.

Since you can program the robot for different sets of tasks, you can have
more than one application. With ASH, each application is identified by a
name. For example, an application that only checks locations and motions
could be called “test”, while an application that actually dispenses material
on a work piece could be called “dispense”.

Files
An application has a program file and a variable file. The program file
contains the step-by-step instructions written in RAPL-3. The variable file
contains all teachable variables.

Teachable Variables
Most variables, including locations, can be made teachable. A teachable
variable is a variable that can be accessed outside the program. Its value can
be changed without having to change the program file.

Teachable variables are stored in the variable file. When you run an
application, the operating system takes the variable file and uses its values
to initialize the variables in the program file just before running.

You change teachable variables with the database.

Database
When you start an application shell, ASH creates a database and loads all
variables and their values from the variable file into the database. If you are
an advanced user and have more than one variable file, you can specify
which variable file to load into the database.

While in the database, you can create or erase variables, change values of
variables, and teach locations.

When you finish modifying a variable and its value, this data is saved from
the database to the variable file. The data must be stored in the variable file
for it to be used with the program file when it is run as an application. The
application shell automatically saves the data to a variable file. If you are an
advanced user with more than one variable file, you can specify which
variable file to save to.

6 Application Development Guide: Application Shell (ash)

99-05-06

Variable Files
You can create a variable file in a number of ways:

• Refreshing from the Program File: When your program file is on the
controller, ASH’s refresh command reviews the program and adds any
teachable variables to the database. After working with the teachables in
the database, you save the new data to the variable file. This method is
used if you write your program before teaching your locations.

• Building on the Controller: You can build a variable file entirely on the
controller using ASH. In the database, create variables and work with
them. When you are finished, save this data to a variable file. This
method is used if you teach your locations before writing your program.

When the variable file is saved, it is saved to a specific directory.

Directories
On the controller, the \app directory contains all applications.

Within \app, each application has its own directory. For example, the
application named “test” has \app\test while the application named
“dispense” has \app\dispense.

When you start an application shell, you must name a specific application,
for example “test” or “dispense”. When an application shell is running, the
current directory for that shell is the directory with the specified application
name. The current directory, the specific application, cannot be changed
within an application shell. If you want to access another application, you
must run another application shell.

Each application has a program file and a variable file. For example, the
application named “test” has “test” and “test.v3” which are stored at
\app\test\test and \app\test\test.v3. When you send your program file
from Robcomm3, you must specify the correct directory. When you save your
variable file from ASH, ASH automatically saves to the current directory.

Multiple Applications
It is good practice to keep applications separate. For each application (a set
of tasks that solves an automation problem) create an application (a
directory in \app containing a specific program and its variable file).

For example: for preparation, create the application “prep” containing the
program “prep” and the variable file “prep.v3”; for loading part 220,
“load_220” with “load_220” and “load_220.v3”; for loading part 440,
“load_440” with “load_440” and “load_440.v3”, and for cleaning up,
“clean_up” with “clean_up” and “clean_up.v3”.

For variations of programs and variables, you can have multiple files in a
directory.

Multiple Files
You can store variations of your program file and variations of your variable
file in the same directory, under the same application name. For example,
“test1”, “test2”, “alpha.v3”, and “beta.v3” can be stored in the same directory.

Chapter 2: ash Basics 7

99-05-06

When you start an application shell, you can specify which variable file to
load into the database. You can also merge data from another variable file
into the database. When you save, save to any variable file.

When you run an application, specify which program file and which variable
file to use when running.

Caution. Use multiple files carefully. It is easy to confuse one file with another, or
confuse your filenames with the default filename. Whenever possible, use a separate
application for each pair of program and variable files.

Robot Motion
The application shell is designed as a tool for developing applications in an
architecture where teachable variables are stored in a variable file separate
from a program file. The database of ASH is used to modify teachable
variables including locations. Before teaching a location, the arm must be
moved with the teach pendant or ASH. To do this, the most common robot
motion commands are accessible from ASH.

8 Application Development Guide: Application Shell (ash)

99-05-06

Running an Application Shell
To use the application shell to teach locations, teach other variables, and
move the arm, you must have an application shell running.

This section describes how to:

• start an application shell

• exit from an application shell

• start a new system shell

• check the shells that you have running

• display the version of the application shell software.

In this part of the Application Development Guide:

the expression is the same as

Starting an application shell Opening an application

Having an application shell running Having an application open

Starting an Application Shell
ASH
You can start an application shell from any system shell prompt (the $
prompt).

When you start an application shell, you must specify the application by
either selecting an existing application or creating a new application.

When starting an application shell, you can list all existing applications and
then select one, or by-pass the listing and just select an application.

The application shell will not start if the pendant program is running. This is
a safety feature to prevent accidental removal of point of control from the
pendant. To terminate the pendant, hit the Esc key until the termination
screen is displayed, and then press the F1 key.

Listing All Existing Applications
1.1.1.1. At the prompt, type:

 ash

2. The application shell displays the message “Existing applications are:”,
lists all existing applications, and displays an “Application name >”
prompt.

3. Type the name of the application.

4. The application shell responds in one of two ways:

• If it is an existing application, ASH loads the default variable file into
the database, displays the message “Loading v3 file
‘application_name.v3’ . . . done.” and displays a prompt with the
application name in it.

• If it is a new application, ASH displays the message “Application
‘application_name’ not found -- try to create it? If you respond y for
yes, ASH creates the new application, creates a variable file “Creating

Chapter 2: ash Basics 9

99-05-06

v3 file ‘application_name.v3’ . . . done.”, loads it into the database,
displays “Loading v3 file ‘application_name.v3’ . . . done.” and displays
a prompt with the application name in it.

If you do not want to start a new ASH session, but typed ASH by mistake, you
cannot back out of the start-up procedure half-way through. Name any
application, such as “test”, to complete the start-up procedure and, once
ASH is started, exit from it.

By-Passing the List
You can specify an application when you type the ASH command. This by-
passes the listing of existing applications.

1. At the prompt, type
 ash application_name
for example:
 ash test

ash dispense

• If it is an existing application, ASH displays the message “Loading
teachables from ‘application_name.v3’ . . . done.” and displays a
prompt with the application name in it.

• If it is a new application, ASH displays the message “Application
‘application_name’ not found -- try to create it? If you respond y for
yes, ASH creates the application, displays the messages for creating
and loading the variable file, and displays a prompt with the
application name in it.

If you do not want to start a new ASH session, but typed ASH and the
application name by mistake, you cannot back out of the start-up procedure.
Complete the start-up procedure and, once ASH is started, exit from it.

Exiting From an Application Shell
exit, quit
To exit from the current application shell, use the exit command.

The exit command terminates the current application shell and returns you
to the point where you started the application shell. If you start ASH from
the system shell, the system shell is the parent process and ASH is its child
process. When you terminate from ASH, you are returned to its parent
process, the system shell.

Any process started by ASH is a child process of ASH. If you terminate ASH
(exit from ASH), any child process of ASH is sent a SIGHUP signal. Any child
process that does not either mask SIGHUP or have an installed signal
handler for it will be terminated by CROS.

The application shell will not allow you to exit if the pendant has point of
control. At the teach pendant keypad, press Shift + ESC to transfer control
to ASH. The transfer function can also be reached by repeatedly pressing
ESC to move up the hierarchy of screens to the Terminate Pendant screen.

The quit command is an alias of the exit command. Remember that the
system shell also has an exit command which exits you out of the system
shell.

10 Application Development Guide: Application Shell (ash)

99-05-06

Running Another System Shell
shell
You can have only one application shell running at one time.

You can have more than one system shell running at one time. The total
number of shells that you can have running at one time is limited by
available memory. An application shell with its database takes far more
memory than a system shell. The system limits you to one application shell.

From the application shell, you can access a system shell in one of two ways:

• You can exit from the application shell. This terminates that application
shell and any of its child processes that do not handle or mask the
SIGHUP signal. Alternatively, you can start a new system shell. This
keeps the existing application shell, and all of its child processes, active
in the background and places you in the new system shell. At the
application shell prompt, use the shell command.

• If you have more than one shell running, you cannot jump from one shell
to another. You must exit from the shell that is the child process to
return to its parent.

Checking Application Shells
ps
You can check the status of an application shell with the system shell’s
process status (ps) command. The application shell (and each system shell)
is a process displayed in the process table.

Although it is a system shell command, the ps command is available from
the application shell.

Checking the Version of ASH
ver
To display which version of ASH you are running, use the version command,
ver.

Remember that the system shell also has a version command which displays
the version of the system shell you are running.

Chapter 2: ash Basics 11

99-05-06

Loading and Refreshing the Database
When you start an application shell, what happens in the database depends
on the variable file.

If you are creating a new application, ASH creates a variable file with the
default name, the same name as the application. This file is empty. Next,
ASH loads the database with this file and the contents of the database
remain empty. Any default saving is done to this default file.

If you specify an existing application, ASH loads that application’s default
variable file (the same name as the application) into the database. If that file
is empty, the database remains empty. If that file has data from previous
activity, those variables and values are loaded into the database.

If you specify an existing application and specify one of the multiple variable
files of that application, ASH loads that specific variable file.

Loading the Default Variable File
If you do not specify a variable file, ASH loads the variable file with the same
name as the application. For example, if you are in the application “test”,
ASH loads “test.v3”, or in the application “dispense”, ASH loads
“dispense.v3”. Even if you have multiple files stored with one application, if
you do not specify a variable file, ASH loads the file with the same name. For
example, if you have “test.v3”, “test1.v3”, “test2.v3”, and “alpha.v3” with the
application “test”, ASH loads “test.v3”.

Loading a Specific Variable File
If your application has more than one variable file, you can specify which file
to load.

Listing Files
To list the variable files, use the dir or ls command and specify the directory.
Changing directories with the cd command, and listing directory contents
with the ls or dir command, is described in the chapters on the system shell.

For example:
ls -R /app
ls /app/test

Loading a File
To load a specific variable file:

1. At the prompt, type
 ash application_name variable_file_name
For example:
 ash test test1
 ash dispense alpha.v3
The .v3 extension is optional.

The application shell displays the message “Loading v3 file
‘variable_file_name.v3’ ... done.”, and displays a prompt with the application
name in it, application_name >.

12 Application Development Guide: Application Shell (ash)

99-05-06

Loading Another File
When you save from the database to a variable file, ASH copies the data to
the file, but the data is also still in the database. You can add some or all of
the data from another variable file with the merge command.

You can erase some or all of the current data from the database with the
erase or eraseall command and then merge some or all of the data from
another file.

For further details, see the sections Working with Variables: Deleting
Variables, and Merging Data From Another File.

Refreshing the Database
refresh
When you are developing your application, you are likely in a repeating
process of editing your program file, compiling it, and sending it to a \app
directory. If you add teachables to your program, you need those new
teachables in the database. Update the database with the refresh command.

The refresh command reviews the program file’s time stamp. If the program
file is newer, the application shell makes a new .v3 file and adds any new
variables to the database.

Chapter 2: ash Basics 13

99-05-06

Working with Variables
Once ASH loads variables from a variable file into the database, you can
work with the variables. Commands are available to: list existing variables,
make new variables, erase variables, change the values of variables, and
print the values of variables.

In this section, variables include locations, integers, floats, and strings.

Listing Variables
list
To list variables in the database, use the list command. The list command
without any parameters lists all variables of all data types. The list command
with a parameter specifying a data type lists all variables of that data type.
Possible data types are: int, float, string, cloc, ploc, gloc.

list

list cloc

The list displays: the data type, name, whether it is taught or not, and the
values of simple types like floats, ints and strings. An asterisk indicates that
the variable is not yet taught, i.e. no value has been assigned to the variable.

Variables: (* indicates not yet taught)
 int number_of_loops = 10
 int counter = 1
 ploc * pick_1
 cloc * place_1

To display the value of any variable type, use the print command.

Remember, this list command of the application shell is different from the ls
command of the system shell that lists a directory.

Making New Variables
new
To make a new variable, use the new command. Using this command is
similar to a declaration in a RAPL-3 program.

new counter

Identifiers
The variable name follows the rules for RAPL-3 identifiers:
• begins with a letter
• has one or more letters, digits, or _ (underscore) characters
• has any combination of uppercase (ABCDE) or lowercase (abcde)

14 Application Development Guide: Application Shell (ash)

99-05-06

Data Types
A prefix, identical to the RAPL-3 implicit declaration prefix, is used to
indicate the data type.

Example Prefix Character Data Type

new counter none int integer

new %difference % percent sign float floating point number

new $message[20] $ dollar sign string[] string of characters

new _safe _ underscore cloc cartesian location

new #dispense # number sign ploc precision location

For a string variable, you must specify its length in characters.

You cannot create a gloc with the new command.

Arrays (One Dimension)
You can make arrays by specifying a size in square brackets. The size is a
positive integer, but the indexing begins at zero.

Example Description

new counter[3] a one-dimensional array of integers
counter[0], counter[1], and counter[2]

new %diff[5] a one-dimensional array of floats
diff[0], diff[1], diff[2], diff[3], and diff[4]

new
$message[20][2]

a one-dimensional array of strings
message[0] and message[1]
each with a length of 20 characters

new _safe[16] a one-dimensional array of cartesian locations
safe[0] to safe[15]

new #dispense[24] a one-dimensional array of precision locations
dispense[0] to dispense[23]

In the example of an array of strings, the string length in characters is
specified first and then the number of strings. Compare this to the single
string in the previous table.

You can make a one-dimensional array of any data type: int, float, string,
cloc, or ploc.

Arrays (Two Dimensions)
You can also make two-dimensional arrays. There are two methods to make
a two-dimensional array: top-down and bottom-up.

Chapter 2: ash Basics 15

99-05-06

Top-Down Method
The top-down method follows the same format used by ASH to display the values
in an array.

First, specify the higher-level element. Second, specify the number of lower-level
elements in each of the higher-level elements. With the top-down method, the
two dimensions are separated by a comma within one set of square brackets.

Example Description

new counter[2,2] a two-dimensional array of integers
counter[0,0], counter[0,1],
counter[1,0], counter[1,1]

new %diff[2,5] a two-dimensional array of floats
diff[0,0], diff[0,1], diff[0,2],
diff[0,3], diff[0,4]
diff[1,0], diff[1,1], diff[1,2],
diff[1,3], diff[1,4]

new _safe[5,16] a two-dimensional array of cartesian locations
safe[0,0] ... safe[0,15]
... ...
safe[4,0] ... safe[4,15]

new
#dispense[10,24]

a two-dimensional array of precision locations
dispense[0,0] ... dispense[0,23]
... ...
dispense[9,0] ... dispense[9,23]

Bottom-Up Method
The bottom-up method is similar to the method used to make a one-dimensional
array of strings.

First, specify the size of the lower-level element in the array. Second, specify
the higher-level number of these elements you want in the array. With the
bottom-up method, each dimension is written in its own complete set of
square brackets.

Example Description
new counter[2][2] a two-dimensional array of integers

counter[0,0], counter[0,1],
counter[1,0], counter[1,1]

new %diff[5][2] a two-dimensional array of floats
diff[0,0], diff[0,1], diff[0,2],
diff[0,3], diff[0,4]
diff[1,0], diff[1,1], diff[1,2],
diff[1,3], diff[1,4]

new _safe[16][5] a two-dimensional array of cartesian locations
safe[0,0] ... safe[0,15]
... ...
safe[4,0] ... safe[4,15]

new
#dispense[24][10]

a two-dimensional array of precision locations
dispense[0,0] ... dispense[0,23]
... ...
dispense[9,0] ... dispense[9,23]

16 Application Development Guide: Application Shell (ash)

99-05-06

You can make a two-dimensional array of int, float, cloc, or ploc, but not
string.

You cannot make an array of teachables with more than two dimensions.

Excess Variables
You can make any variable. If, when you run the application, the variable is
not used by the program, the system displays a message that the variable is
being ignored.

Teaching Variables
here, set
When you use the new command, or when you use ASH’s (or the compiler’s)
.v3 file generator, variables are created but have no values assigned to them.

To assign values to variables or “teach” these teachable variables, there are
two commands: here and set. With the here command, you can pack position
data into a location variable. With the set command, you can set a value with
a constant or set a value with another variable.

Using the here Command With Locations
The here command is used with locations. This command obtains data about
the current position of the arm and assigns that data to the location
variable.

Since the here command obtains current position data, you must move the
arm to the desired position before using the here command.

Simple locations.
here safe_loc
here point1

Elements of arrays.
here place[2][3]
here a[4,10]

Using the set Command With Ints, Floats, and Strings
The set command is used with ints, floats, and strings. With the set
command, you specify the value to be assigned: an integer value, a floating
point value, or a string of characters. You can also use the set command to
initialize locations, but they have limited uses.

Integer and float constants can be positive or negative. String constants are
enclosed in double quotes.

Simple Variables
Integer constants and integer variables.

set count_step = -2
set number_of_loops = 100
set number_of_loops = number_of_samples

Chapter 2: ash Basics 17

99-05-06

Float constants and float variables.
set factor = -0.5
set x_increment = 1.66666
set y_increment = x_increment

String constant and string variable.
set message_pause = "Waiting for input."
set message_1 = message_2

Arrays
You must set each element of the array separately. You cannot set the entire
array at once.

Array of integers with constants.
set a[0] = 32

 set a[1] = 64
 set a[2] = 128
 set a[3] = 256

Array of integers with variables.
set b[0] = a[0]

 set b[1] = a[1]
 set b[2] = a[2]
 set b[3] = a[3]

Array of strings with constants. Use double quotes around the string
constant.

set error_string[0] = "No errors"
 set error_string[1] = "Missing part 1"
 set error_string[2] = "Missing part 2"
 set error_string[3] = "Incomplete assembly"

Array of strings with variables.
set error_string[0] = message[10]

 set error_string[1] = message[11]
 set error_string[2] = message[12]
 set error_string[3] = message[13]

String Limit
Any string that has been declared as a specific size can take only that
number of characters. If you try to set a larger number of characters into the
string variable, the extra characters are lost.

Example with constant:
new $message[20]

 set message = "Re-set counter to 1000."
 print message
 = "Re-set counter to 10"

Example with variable:
 new $message1[25]
 set message1 = "Re-set counter to 1000."
 print message1
 = "Re-set counter to 1000."

new $message2[20]
 set message2 = message1
 print message2
 = "Re-set counter to 10"

18 Application Development Guide: Application Shell (ash)

99-05-06

This problem can exist whether the variable is in the database and variable
file as a result of the new command or as a result of ASH’s v3 file generator
reviewing a program with a declaration such as
 teachable string[20] message2

You can display the size of a string with the list command.

Values From Other Variables
If you set a value using another variable, the current value is used and any
further changes to one variable have no affect on the other variable. For
example:
new alphanew alphanew alphanew alpha create an integer
new betanew betanew betanew beta create an integer
set alpha = 5set alpha = 5set alpha = 5set alpha = 5 set alpha to the value of the constant 5
set beta = alphaset beta = alphaset beta = alphaset beta = alpha set beta to current value of variable alpha which is 5
set alpha = 10set alpha = 10set alpha = 10set alpha = 10 set alpha to the value of the constant 10
print alphaprint alphaprint alphaprint alpha display the value of alpha
 = 10 = 10 = 10 = 10 the value when it was last set
print betaprint betaprint betaprint beta display the value of beta
 = 5 = 5 = 5 = 5 the value when it was last set

Values From New Variables
When you set a value using a second variable, that second variable must
already be in the database. If you try to set a value and that second variable
does not exist, the system asks if you want to create that variable. Even if
you respond “yes” and the system makes that second variable, the system
takes its unset value (zero) and uses that in your original set command. You
must set the value of the second variable and then use that in setting the
first variable. For example:
set y = zset y = zset y = zset y = z try to set y to the value of z
Variable z notVariable z notVariable z notVariable z not
found.found.found.found.
 -- create it? -- create it? -- create it? -- create it?

Variable z does not exist
system prompts to create it

yesyesyesyes respond with yes
variable z is created
variable z has not been set by user and is zero
original command is executed: sets y to value of z (zero)

print zprint zprint zprint z display the value of z
 = 0 = 0 = 0 = 0 the value when it was created
print yprint yprint yprint y display the value of y
 = 0 = 0 = 0 = 0 the value when it was set to equal z
set z = 5set z = 5set z = 5set z = 5 z is set to 5
set y = zset y = zset y = zset y = z original command now works: y is set to 5
print zprint zprint zprint z display the value of z
 = 5 = 5 = 5 = 5 the value when it was last set
print yprint yprint yprint y display the value of y
 = 5 = 5 = 5 = 5 the value when it was last set

Chapter 2: ash Basics 19

99-05-06

Using the set Command With Locations
In the same way that you can set a value for an int, float, or string variable,
you can set the value for a location variable with the set command.

Variables
A location variable can be set with another location variable of the same
type.

set safe_point_9 = safe_point_1
set path_out[0] = path_in[0]

Constants
When you use the set command with constants, you must specify the exact
value to be assigned to the variable.

With a cloc location variable, you must specify exact cartesian axis distances
and rotational orientations.

A cloc is composed of five to eight floats for cartesian axis distances,
rotational orientations, and extra axes. The application shell promotes
integers to floats where necessary and ignores unneeded extra axis values.
For example:

set plate_xfrm = {12.0,0.0,42.0,0.0,0.0,0.0,30.0,0.0}
set stack_xfrm = {20,15,5,0,-90,0,0,0}

You cannot move to the resulting cloc. You can only use it to modify a
coordinate system or a location, such as specifying a base offset, a tool
transform, a world shift (wshift), or a tool shift (tshift).

Normally location variables are modified with the here command.

Displaying Values of Variables
print or ?
After loading variables into the database from a file or after teaching a
variable with the here or set command, you can display the value of a
variable with the print command. You must specify the variable.

print number_of_cycles
= = = = 10

The ? (question mark) is an alias for the print command.
? number_of_cycles
= = = = 10

If you specify an array, ASH displays all elements of the array.
print difference
[0,0] = 33.3333
[0,1] = 16.6667
[1,0] = 25.0000
[1,1] = 12.5000

20 Application Development Guide: Application Shell (ash)

99-05-06

Deleting Variables
erase, eraseall
To erase a variable and its value from the database, use the erase command.
You must specify the variable to erase. You can erase an array, but not part
of an array.

erase number_of_loops
erase pick_1
erase safe
erase dispense

To erase all variables and their values from the database, use the eraseall
command.

eraseall

With both the erase command and the eraseall command, ASH prompts you
to confirm the action.

Chapter 2: ash Basics 21

99-05-06

Merging Data
When you work in the database, you are modifying data to save to a variable
file. While working in the database, you may want to include data from an
existing variable file. For example, you may have taught several locations
and saved them to a file, and now want these same locations in the database
to include them in a new variable file.

To get data from an existing file, use the merge command.

When you merge data, you usually use two other commands. You often erase
unneeded data from the database before or after merging data into the
database. Also, you often save data from the database to variable files as well
as merge data from files to the database.

Preparing the Database
erase & eraseall
You may work on a series of variable files with very different content. If this
is the case, you may want to erase all data in the database with the eraseall
command. You can then load the contents of the next variable file with the
merge command. Since there are no variables in the database to conflict, the
merge command loads the entire contents of the file into the database
without prompting for confirmation.

Alternatively, you may be working with data in the database and, after
saving to one file, want some, but not all, of that data for the second file. If
this is the case, you can erase unwanted data from the database with the
erase command.

Adding Teachables From Another File
merge
You can load data from any variable file into the database with the merge
command.

As it prepares to load data, the merge command checks for name conflicts
where a variable in the file has the same name as a variable in the database.
If a conflict occurs, ASH asks you whether you want to accept or reject the
value from the file into the database. If you accept, the file value over-writes
the existing database value. If you reject, the existing database value
remains. You can do this for each variable, one at a time, or for all variables,
all at once. Each time ASH asks, you have four options.

single variable every variable

accept yes all

reject no ignore

At the first conflict, a message with the variable name is displayed, such as:
Variable name: accept new value (yes/no/all/ignore)?

If you respond for that single variable (with yes or no), ASH accepts or rejects
that variable and then displays a similar message for the next conflicting
variable.

22 Application Development Guide: Application Shell (ash)

99-05-06

If you respond for every conflicting variable (with all or ignore), ASH accepts
or rejects the current specific variable and all remaining conflicting variables.

After you have merged some or all of the variables from a second file into the
database, work with those variables and then save them to a file.

Cleaning Up the Database
erase
When loading data from a file into the database, the merge command
prompts for a response (yes, no, all, ignore) only if there is a name conflict.
Any variable with a unique name is automatically loaded into the database
from the file. You may get variables in the database that you do not need.
You can erase these from the database with the erase command.

Chapter 2: ash Basics 23

99-05-06

Saving Data
When you set values to variables, teach locations, or make other
modifications, you make changes in the database. Data is saved from the
database to the variable file. When you run a program, the system uses the
data in the variable file to initialize the variables in the program.

Whether saving is done automatically or by the save command, the new data
over-writes the existing .v3 file. To keep an old .v3 file, use the system shell’s
commands for copying, renaming, or moving files.

Automatic Saving
Whenever you make a change in the database, ASH automatically saves to
the variable file. You do not need to use the save command.

The application shell saves to the default variable file, set when ASH is started.

If you do not specify a variable file when you start ASH, the default variable
file is the file with the same name as the application. For example, if you
started the application “test” without specifying a file, the default variable file
is “test.v3”. The automatic save feature does not save to any other file.

If you specify a variable file when you start ASH, the default variable file is the
file that you specified. For example, if you started the application “test” with
the file “alpha.v3”, the automatic save feature saves the data to “alpha.v3”.

To save to a different file you must use the save command.

Saving to a Specific File
save
You can save to any file with the save command.

If you do not specify a file, ASH saves to the default variable file.

You can specify any file, existing or new, and can specify the path, absolute
or relative, to the file.

save alpha.v3
save \app\test\alpha.v3
save ..\test\alpha.v3

If you do not specify the .v3 extension, ASH adds it to the file name.
save alpha
save \app\test\alpha
save ..\test\alpha

Once the data has been saved to a variable file, that variable file can be used
with a program file.

Saving to Multiple Files
When you save to a file, the data is copied into the file, but the data is still in
the database until you exit from the application or power down. You can
further modify the data in the database and save that to another file. In this
way, you can build several similar variable files.

24 Application Development Guide: Application Shell (ash)

99-05-06

Configuring the Arm
Before moving the arm to teach locations, several settings may need to be
made.

The commands listed below are described in detail in the next chapter,
Application Shell Commands.

Homing the Arm
home
home home the axes

Getting Arm Data
w0, wcmd, w1, w2, wact, w3, w4, wend, w5
w0 wcmd display commanded position
w1 continually display actual position
w2 wact display actual position
w3 continually display commanded position
w4 wend display the next motion end-point
w5 display velocity command

Preparing to Move
base, tool, griptype_set, speed
These commands have equivalents in RAPL-3. If you set one of these with
ASH and do not set it in the program, when you run the program, the ASH
setting is maintained. If you set one of these with ASH and then set it in the
program, when the program is run, the ASH setting is over-written.

You need to set the tool transform before teaching locations in ASH.

base base offset, re-define the world coordinate system
tool tool_set tool transform, re-define the tool coordinate system
griptype_set displays/sets the type of gripper used (air, servo, none)
speed displays/sets the current speed setting

Chapter 2: ash Basics 25

99-05-06

Moving the Arm
The application shell with its database modifies teachable variables. Most
importantly, it modifies locations. Before a location can be taught with the
here command, the arm must be moved to a position.

You can move the arm with the teach pendant or with ASH. The application
shell contains the most common robot motion commands.

Motion using ASH can be dangerous. The arm tries to complete the motion
command as specified. If the increment is too large, a collision could result, damaging
the arm, work pieces, or other equipment. Use small increments and slow speed. Be
prepared to hit an e-stop. Use the teach pendant where releasing a motion key stops
motion.

The motion commands are described in detail in the next chapter,
Application Shell Commands.

26 Application Development Guide: Application Shell (ash)

99-05-06

Transferring Control
The application shell and the teach pendant are similar devices. One is a
command-line interpreter using keyboard and monitor, and the other is a
hand-held device using a keypad and LCD display. Through either device,
you can create variables, set values to variables, teach locations, and move
the arm.

Additionally, the program can move the arm.

Unsafe operation would result if more than one of these had control of the
arm. The system is designed for only one to have control of the arm at one
time.

Opening an Application
When the application is opened from ASH — by starting ASH and specifying
an application by name — ASH is the parent process. When the pendant is
started from ASH, it does so as a child process of ASH.

You can check the status of the pendant process with the system shell’s ps
command. The pendant is labeled “stpv3”.

Securing Control at the Pendant
With both ASH and the pendant running, either can be used to move the
arm or perform other operations such as modifying variables. If you use the
pendant and successfully move the arm, control is secured at the pendant.
Control remains there until you explicitly transfer it to ASH or run a
program.

Transferring from ASH to the Pendant
pendant
You can start the pendant process and transfer control from ASH to it with
the pendant command.

application_name>pendant

Explicitly Transferring Control to the Pendant
If the pendant process is already running, the pendant command transfers
control from ASH to the pendant.

Transferring from the Pendant to ASH
If the pendant has control, it must explicitly give control to another process.
Another process, such as ASH, cannot take control.

At the teach pendant keypad, press Shift + ESC to transfer control to ASH.
The transfer function can also be reached by repeatedly pressing ESC to
move up the hierarchy of screens to the Terminate Pendant screen.

Chapter 2: ash Basics 27

99-05-06

Securing Control by a Program
When a program is run, control is readied to be transferred to the program.
If the program successfully moves the arm, control is secured by the
program. Control remains there until the program explicitly transfers control
with the ctl_give() command or releases it with ctl_rel() command.

Having the program use the terminal or the pendant for taking input from
the keyboard or keypad, is just using that device for standard input/output
and does not affect point of control of the robot.

Understanding Control
For more on points of control and transferring control, see the chapter on
Points of Control.

28 Application Development Guide: Application Shell (ash)

99-05-06

Running an Application
You can run an application from ASH. You can run the application that you
have open, or run any other application.

Running the Default Program
run
You can run the application with the run command.

application_name>run

The run command executes the program file with the same name as the
application using the variable file with the same name as the application
name.

For example, if you are in the application “test”, the run command executes
“test” with “test.v3”.

Running Any Program
filename
Normally, with one program file and one variable file under one application,
the run command is sufficient.

If needed, you can run any application by specifying the program. You can
optionally specify the variable file.

Use this method if you have multiple program files or multiple variable files,
or want to test run a file in another directory without exiting out of the
current application shell.

test>test1
test>test1:test1.v3
test>test1:alpha.v3
dispense>..\test\test1:..\test\alpha.v3

Running from the System Shell
You can run any application from the system shell.

It can be more efficient to run your application without ASH. Your
application needs memory to run and ASH takes up some memory. If you are
finished developing your application, you can exit from ASH (which frees the
memory) and run your application from the system shell prompt.

To run from the system shell, you must use the filename, either specifying
the path to the file or first changing the working directory to the application’s
directory. If you specify only the program file, the system uses the variable
file with the same name as the program file. You can specify the variable file
with the : (full colon) as you can in ASH.

Chapter 2: ash Basics 29

99-05-06

Running in the Background
&
You can run an application in the background. This gives you back the
prompt to enter other commands while the program is executing. Use an &
(ampersand) after the executable.

test>run &
test>test1 &
test>test1:test1.v3 &

Once the program successfully moves the robot, the program has control of
robot motion and you cannot use any robot motion commands of ASH.

If the program is run from ASH, the program is a child process of ASH. If you
exit ASH, which terminates the ASH process, all child processes of ASH,
including the program, are sent a SIGHUP signal. If a child process does not
mask or handle SIGHUP, then it is terminated by CROS.

30 Application Development Guide: Application Shell (ash)

99-05-06

31

99-05-06

C H A P T E R 3

Application Shell Commands

This chapter describes the commands that you can use through the
application shell (ASH). There are four sections:

• categories of ASH commands

• details of individual ASH commands, listed alphabetically

• command line features

• system shell commands available in ASH

Almost all robot commands (motion, gripper, calibration, coordinate systems,
etc.) call RAPL-3 commands from the libraries. Further details of these
commands are in the RAPL-3 Language Reference Guide.

32 Application Development Guide: Application Shell (ash)

99-05-06

Categories of Commands
Details of the commands are given in the alphabetical listing.

Start Up and Exit
ash start the application shell
exit exit the current application shell
ver display the version of the application shell
Variables, Values, and Locations
erase erase variable and value
eraseall erase all variables and values
here store current coordinates into location variable
list list variable types and names and values for int, float and

string types
merge merge variable records from a .v3 file
new create a new variable
print, ? display the value of a variable
refresh refresh .v3 file and database from program
save save variables to a .v3 file
set, ! set (assign) a value to a variable
Coordinate Systems
base, base_set base offset, re-define the world coordinate system
tool, tool_set tool transform, re-define the tool coordinate system
tshift modify location in tool coordinate system
wshift modify location in world coordinate system
Calibration, Homing, and Status
ampstat obtain the status of F3 amplifiers
arm_status,
armstat

display robot arm status information

armpower, arm enable/disable arm power
calrdy move to calrdy position
clrerror clear motion errors on F-series robots
home home the axes
robotver display robot version
w0, wcmd display commanded position
w1 continually display actual position
w2, wact display actual position
w3 continually display commanded position
w4, wend display end-point position
w5 display position error

Arm Configuration

chapter 3: Application Shell Commands 33

99-05-06

accel display/set accelerations
cfg_save save robot configuration
linacc_set, linacc display/set linear acceleration
linspd_set, linspd display/set linear speed
rotacc_set, rotacc display/set the maximum rotational acceleration
rotspd_set,
rotspd

display/set the maximum rotational speed

servoerr display the servo error detection parameters

Machine
use display/select robot to use (if more than one)

Motion
align align to world axis
appro, appros move to approach position
calrdy move to calrdy position
depart, departs move to depart position
finish finish motion
halt halt (stop) motion
joint rotate a joint
limp limp joint(s)
lock lock joint(s)
motor rotate a motor
move, moves move to a location
nolimp unlimp joint(s)
online set online mode
pitch, pitchs pitch tool centre point (in tool coordinate system)
ready move to ready position
roll, rolls roll tool centre point (in tool coordinate system)
speed set speed
stance,
stance_set

place arm in pose

tx, txs jog along the tool X axis
ty, tys jog along the tool Y axis
tz, tzs jog along the tool Z axis
unlock unlock joint(s)
wx, wxs jog along the world X axis
wy, wys jog along the world Y axis
wz, wzs jog along the world Z axis
xrot, xrots rotate around the world X axis
yaw, yaws yaw the tool centre point (in tool coordinate system)
yrot, yrots rotate around the world Y axis

34 Application Development Guide: Application Shell (ash)

99-05-06

zrot, zrots rotate around the world Z axis
Gripper
gripdist_set, grip move servo gripper fingers to a distance
grip_close,
gclose, gc

close the gripper

grip_open,
gopen, go

open the gripper

griptype_set,
gtype

display/set the type of gripper used (air, servo, none)

wgrip display servo gripper finger distance
Input/Output
input display state of channel
output set state of channel
Pendant
pendant start the pendant and transfer control to pendant
Application Execution
run run (execute) a program
file_name run (execute) a program
Help
help display help on commands

chapter 3: Application Shell Commands 35

99-05-06

 Detailed Descriptions
These are detailed descriptions of all ASH commands listed alphabetically.

file_name
Description Runs the specified program file with the specified variable file.

 Starting the application shell changes the working directory to the directory
with the application’s name. If you want to run a file in another directory,
you can either change the working directory (with the cd command) and
enter the filename, or enter the full path to that file. You can use either the
relative path from the working directory or the absolute path.

If you have multiple files in the application directory, specify by filename to
run a file.

If you run from the system shell, you must specify by filename. If you are
finished developing your application, you can exit out of ASH and run your
program from the system shell. Exiting from ASH frees space in memory that
could be used by larger programs.

Format The following short-forms are used in the next table.

xpath the path to the executable program file
xname the executable program file name
vpath the path to the variable file
vname the variable file name

File names can be entered according to any of the following formats. The
separator between program file and variable file is : (full colon).

xname program file name (uses variable file of same name)
xname:vname program file name with variable file name
xname:vpath/vname program file name with variable file path and

variable file name
xpath/xname program file path and program file name

(uses variable file of same name)
xpath/xname:vname program file path and program file name with

variable file name
xpath/xname:vpath/v
name

program file path and program file name with
variable file path and variable file name

The .v3 extension is optional.

Examples test1 test1 with test1.v3

test1:alpha test1 with alpha.v3

test1:samples/beta test1 with (from samples directory) beta.v3

test/prep (from test directory) prep with prep.v3
test/prep:alpha (from test directory) prep with alpha.v3
test/prep:samples/beta (from test directory) prep with (from samples

directory) beta.v3

36 Application Development Guide: Application Shell (ash)

99-05-06

See Also run runs the program with the same name as the application
& (in Features) places the program in the background

Category Execution

?
Displays the value of the specified variable in the current database.

See print

!
Sets (assigns) a value to a variable.

See set

accel
Description Displays or sets the current acceleration settings of the robot. The units are

degrees/sec2 for rotation joints and inches or mm/sec2 for linear joints such
as tracks.

Warning Setting the accelerations to large values can cause mechanical damage to the
robot.

Display
Syntax accel

Parameters none

Example accel

Result Current Accelerations are:
J1=499.9999, J2=499.9999, J3=499.9999, J4=2250, J5=499.9999...

Set
Syntax accel j1, j2, j3, j4, j5, j6

Parameters Six required parameters.

j1 joint 1 acceleration

.

j6 joint 6 acceleration

Example accel 0.3, 0.2, 0.2, 0.2, 0.2, 0.2

 Sets acceleration values of joint 1 to 0.3 and joints 2 through 6 to 0.2.

RAPL-3 Language accels_set(), accels_get().

RAPL-II Similar to @@ACCEL

chapter 3: Application Shell Commands 37

99-05-06

See Also linacc_set displays/sets linear acceleration
rotacc_set displays/sets rotational acceleration

Category Arm Configuration

align
Description Aligns the tool parallel to the nearest or a specific world axis.

Syntax align axis

Parameter One required parameter.
axis the axis to align to, one of:

n the nearest world axis

x the world X axis

-x the world -X axis

y the world Y axis

-y the world -Y axis

z the world Z axis

-z the world -Z axis

Examples align x
align -z

RAPL-3 Language Same as align().

RAPL-II Similar to ALIGN.

Category Motion Arm Configuration

ampstat
Display F3 amplifier status information.

See amp_status

amp_status
Alias ampstat
Description Display F3 amplifier status information. Displays nothing for A Series robots.

Syntax amp_status

Parameter There are no parameters.

Examples amp_status

Result Waist module:
DSP code version 16
Intel I196 code version 292
Temperature is : 25.8 degrees

38 Application Development Guide: Application Shell (ash)

99-05-06

Wrist module:
DSP code version 16
Intel I196 code version 292
Temperature is : 27.3 degrees

Track module:
DSP code version 18
Intel I196 code version 292
Temperature is : 27.3 degrees

Arm Power is OFF

Amplifier Status
1......OK
2......OK
3......OK
4......OK
5......OK
6......OK
7......OK

RAPL-3 Language No direct equivalent. The commands robotispowered() and robot_servo_stat()
provide arm power and amplifier status information.

RAPL-II No equivalent.

See Also arm_status
Category Calibration, Homing, and Status

appro, appros
Description Moves the tool point to an approach position. An approach position is a

position near a location, but a specified distance away from the location
along the “approach/depart” tool axis. Used as a preliminary position before
moving carefully to the exact location.

The motion from the current position is joint interpolated with appro and
cartesian interpolated, straight line, with appros.

Syntax appro location_name , distance
appros location_name , distance

Parameters Two required parameters.

Location_name the name of the cartesian location to approach

Distance the distance away from the location, along the
“approach/depart” tool axis, in current units (mm or in)

Examples appro place_1, 2
appros place_2, 1

RAPL-3 Language Same as appro() and appros().

RAPL-II Same as APPRO, without and with the s parameter.

See Also depart moves away from the current position
departs moves away from the current position in a straight line
tool re-defines the tool axis

Category Motion

chapter 3: Application Shell Commands 39

99-05-06

arm
Enables or disables robot arm power.

See armpower

arm_status
Alias armstat
Description Displays robot arm status information.

Syntax arm_status

Parameter There are no parameters.

Examples arm_status

Result Robot arm is of type F3
Arm power is OFF Robot is calibrated
Units are Metric Online is OFF
Physical stance: forward up noflip

Current Tool Transform is:
tx=0, ty=0, tz=0, yaw=0, pitch=0, roll=0

Current Base Transform is:
wx=0, wy=0, wz=0, xrot=0, yrot=0, zrot=0

Axis locked done limped
1 N Y Y
2 N Y Y
3 N Y Y
4 N Y Y
5 N Y Y
6 N Y Y
7 N Y Y

RAPL-3 Language No direct equivalent. The commands server_info(), robot_info(), units_get()
and axis_status() provide the same information.

RAPL-II No equivalent.

See Also ampstat
Category Calibration, Homing, and Status

40 Application Development Guide: Application Shell (ash)

99-05-06

armpower
Alias arm
Description Enables or disables robot arm power.

The disable command immediately shuts off arm power, if currently on. The
arm power switch on the front panel has no effect.

The enable command allows the arm power to be turned on. The arm power
switch must be manually operated to turn on arm power.

Syntax armpower onoff

Parameters One required parameter.
onoff the flag, one of:

0 disable
1 enable

Examples armpower 0
armpower 1
arm 0
arm 1

RAPL-3 Language Same as armpower().

RAPL-II Same as ARM.

Category Calibration, Homing, and Status

armstat
Displays robot arm status information.

See arm_status

base
Alias base_set
Description Displays or sets the robot base offset; re-definition of the world coordinate system.

If a base offset is set, then the cfg_save command must be used in order to
save it as part of the robot power on configuration. Do not run cfg_save if the
base offset being set is not the one that you want the robot to power on with.

Display
Syntax base

Parameters There are no parameters.

Example base

Result Current Base Transform is:
wx=0, wy=0, wz=0, zrot=0, yrot=0, xrot=0

chapter 3: Application Shell Commands 41

99-05-06

Set
Syntax base x, y, z, zrot, yrot, xrot

Parameters Six required parameters.
x distance along the world X axis
y distance along the world Y axis
z distance along the world Z axis
zrot rotation about the world Z axis
yrot rotation about the world Y axis
xrot rotation about the world X axis

Example base 1, 2, 3, 45, 10, 15

RAPL-3 Language Same as base_get(), base_set().

RAPL-II Similar to BASE.

See Also cfg_save save robot configuration
tool displays/sets a tool transform

Category Coordinate Systems

base_set
Sets a base offset.

See base

calrdy
Description Moves the robot to the calibration ready position.

For an F3 or A465 robot, the calrdy position is straight up, the same as the
ready position with joint 3 rotated an addition 90°.

For an A255 robot, the calrdy position is straight out with the arm links from
shoulder (joint 2) to wrist (joint 5) aligned to the world X axis.

Syntax calrdy

Parameters There are no parameters.

Example calrdy

RAPL-3 Language Same as calrdy().

RAPL-II Same as CALRDY.

See Also ready moves to the ready position.

Category Motion

42 Application Development Guide: Application Shell (ash)

99-05-06

cfg_save
Description Saves the current robot configuration information. This consists of:

• Whether the robot is on a track or not. This can be set in RAPL-3 with
track_spec_set().

• The total number of axes in the system. Maximum of 8. This can be set
in a RAPL-3 program with the axes_set() command.

• The tool offset. This can be set in the application shell by using the tool
command or a RAPL-3 program using the tool_set() command.

• The base offset. This can be set in the application shell by using the
base_set command or a RAPL-3 program using the base_set() command.

• If a track is present, the positive and negative travel lengths from the
zero position. This can be set in RAPL-3 with the jointlim_set() command.

• The gripper type: air, servo or none. This can be set in the application
shell by using the griptype_set command or in a RAPL-3 program with
the griptype_set() command.

• The engineering units to be used: Metric (mm) or English (inches). This
can be set in the application shell by using the /diag/setup command or
in a RAPL-3 program with the units_set() command.

With the exception of the base and tool offset all of the above parameters can
also be set using the /diag/configur utility in the system shell.

Syntax cfg_save

Parameters There are no parameters.

Example cfg_save()

RAPL-3 Language No direct equivalent. The combination of track_spec_set(), axes_set(),
tool_set(), base_set(), jointlim_set(), griptype_set() and units_set() provides
equivalent functionality.

RAPL-II @@SETUP, @TRACK and @XLIMITS provided some of the same functionality.

See Also tool_set tool transform, re-define the tool coordinate system
gtype displays/sets gripper type used (air, servo, none)
base_set base offset, re-define the world coordinate system

Category Arm Configuration

clrerror
Description Clears persistent error bits on the F3 amplifier. This includes runaways,

collisions, overspeeds, and encoder faults. After an error of this type, the
clear_error() command must be invoked before arm power can be re-engaged.

Note: This is command only works with the F-series arms.

Syntax clrerror

Parameters There are no parameters.

chapter 3: Application Shell Commands 43

99-05-06

Example clrerror()

Result Error state has been cleared.

RAPL-3 Language Same as clear_error().

RAPL-II No equivalent.

Category Calibration, Homing, and Status

depart, departs
Description Departs from a position. Moves the tool point from the current position to a

position that is a specified distance away, along the “approach/depart” tool
axis. Often used to slowly and carefully move the tool away from an exact
location before moving quickly elsewhere.

Can be used from any position, not only locations.

A positive value moves away from the current position, in the negative
direction of the tool axis. A negative value moves in the opposite direction,
forward, past the position.

The motion from the current position is joint interpolated with depart and
cartesian interpolated, straight line, with departs.

Syntax depart distance
departs distance

Parameters Takes one required parameter.

distance the distance from the position, in current units

Examples depart 100
departs 3

RAPL-3 Same as depart() and departs().

RAPL-II Same as DEPART, without and with the s parameter.

See Also appro/appros moves to an appro position
tool re-defines the tool axes

Category Motion

erase
Description Erases (deletes) the specified variable and its value from the current

database.

Syntax erase variable_name

Parameters Takes one required parameter:

variable_name the name of the variable to erase

Examples erase a
erase place_1

Confirmation Erase variable ‘name’ and its value?

Response Takes one response:

44 Application Development Guide: Application Shell (ash)

99-05-06

y or yes erase the variable and value

n or no do not erase the variable and value

Any other response displays a prompt for a correct response.

See Also eraseall erases all variables and values from database

Category Variables, Values, and Locations

eraseall
Description Erases (deletes) all variables and their values from the current database.

Syntax eraseall

Parameters There are no parameters.

Example eraseall

Confirmation Erase ALL teachable variable values: are you sure?

Response Takes one response:

y or yes Erase all variables and values

n or no do not erase any variables and value

Any other response displays a prompt for a correct response.

See Also erase erases a single variable and value from database

Category Variables, Values, and Locations

exit
Alias quit
Description Exits the current application shell.

 Returns to the parent process of this application shell, normally a system
shell.

The application shell will not allow you to exit if the pendant has point of
control. At the teach pendant keypad, press Shift + ESC to transfer control
to ASH. The transfer function can also be reached by repeatedly pressing
ESC to move up the hierarchy of screens to the Terminate Pendant screen.

Warning Exiting from ASH sends a SIGHUP signal to all child processes of ASH,
including any programs started from ASH. A child process that does not
mask or handle a SIGHUP will be terminated by CROS.

Syntax exit

Parameters There are no parameters.

See Also ash starts a new application shell
exit (in the system shell) exits from the system shell

Category Start Up and Exit

chapter 3: Application Shell Commands 45

99-05-06

finish
Description Finishes arm motion before further program execution. Note: finish does not

wait for gripper motions to finish.

Syntax finish

Parameters There are no parameters.

Example finish

RAPL-3 Language Same as finish().

RAPL-II Same as FINISH.

See Also online sets online mode on or off

Category Motion

gc
Closes the gripper.

See grip_close

gclose
Closes the gripper.

See grip_close

go
Opens the gripper.

See grip_open

gopen
Opens the gripper.

See grip_open

grip
Sets the gripper distance.

See gripdist_set

46 Application Development Guide: Application Shell (ash)

99-05-06

gripdist_set
Alias grip
Description Moves the servo-gripper fingers to a specified distance apart from each

other. Fingers move in an opening or closing direction depending on the
starting position. Distance is in currently set units: metric or English.

Gripper type must be set to 2 (servo) for the gripdist_set command to
function.

 Warning This command operates at 100% force. Do not use this command to hold an
object. Use grip_close or grip_open which operates with the servo loop.

Syntax gripdist_set distance
grip distance

Parameters One required parameter.

distance the distance between fingers in current units: a float

Examples gripdist_set 1.0
grip 10.5

RAPL-3 Language Same as gripdist_set().

RAPL-II Same as GRIP.

See Also grip_close closes the gripper
grip_open opens the gripper
griptype_set displays/sets the type of gripper used (air, servo, none)

Category Gripper

grip_close
Aliases gclose, gc
Description Closes the gripper fingers with an optionally specified servo force.

Syntax grip_close [force]
gclose [force]
gc [force]

Parameters One optional parameter.

force the percentage of force (servo-gripper only)

 If no parameter is given, the last force setting is used (servo-gripper only).

Examples grip_close 60
grip_close
gclose 20
gclose
gc 70
gc

RAPL-3 Same as grip_close().

chapter 3: Application Shell Commands 47

99-05-06

RAPL-II Same as CLOSE.

See Also grip_open opens the gripper fingers: opposite of grip_close
gripdist_set moves the fingers to a specified separation distance
griptype_set displays/sets the type of gripper used (air, servo, none)

Category Gripper

grip_open
Aliases gopen, go
Description Opens the gripper fingers with an optionally specified servo force.

Syntax grip_open [force]
gopen [force]
go [force]

Parameters One optional parameter.

force the percentage of force (servo-gripper only)

 If no parameter is given, the last force setting is used (servo-gripper only).

Examples grip_open 25
grip_open
gopen 10
gopen
go 75
go

RAPL-3 Language Same as grip_open().

RAPL-II Same as OPEN.

See Also grip_close closes the gripper fingers: opposite of grip_open
gripdist_set moves the fingers to a specified separation distance
griptype_set displays/sets the type of gripper used (air, servo, none)

Category Gripper

griptype_set
Alias gtype
Description Displays or sets the gripper type attached to the robot.

 Note that the gripper type must be set to 2 (servo) for the gripdist_set
command to work.

Syntax griptype_set [type]
Parameters There is one optional parameter:

type The type of gripper the robot has attached. Valid values are
“none”, “air” or “servo” (equivalent to codes 0, 1 or 2) If this
argument is omitted, then the gtype command displays what the
gripper is currently set to.

Example1 griptype_set

48 Application Development Guide: Application Shell (ash)

99-05-06

Possible Responses Gripper type set to 1--AIR
Gripper type set to 2--SERVO
Gripper type not set

Example2 griptype_set servo

Result The robot gripper type is set to servo. Note: for this setting
to persist when the controller is rebooted, the cfg_save
command must be used to record the setting.

RAPL-3 Language Same as griptype_set() and griptype_get()
RAPL-II Same as @@SETUP: response to gripper type query

See Also wgrip displays the finger separation distance of a servo gripper
cfg_save save current robot configuration

Category Gripper

gtype
Displays or sets the gripper type.

See griptype_set

help
Description Displays help on application shell commands. Displays: command name,

parameters, brief description.

 Although many system shell commands are accessible from the application
shell, help on system shell commands is available only from the system shell.

Syntax help [command_name]

Parameters One optional parameter:

command_name the command for which you want help

 No parameter gives a list of all application shell commands.

Examples help
help list
help move

See Also help (in the system shell) displays help on system commands

Category Help

here
Description Stores the current arm coordinates into a specified location variable. Used to

teach locations. This location is here at these coordinates.

If the location variable does not exist, makes a new location variable. The
type of location variable (cloc or ploc) is specified by a type prefix. The default
type is cloc, if no prefix is provided.

Also, the here command displays the coordinates of the current position.

chapter 3: Application Shell Commands 49

99-05-06

Syntax here [[type_prefix]location_name]

Parameters No parameter, displays the current position.
One optional parameter. The parameter has an optional prefix.

location_name the name of the location

type_prefix the prefix indicating data type

The location name follows the rules for RAPL-3 identifiers.

• begins with a letter

• one or more letters, digits, or _ (underscore) characters

• any combination of uppercase (ABCDE) or lowercase (abcde)

The type prefix indicates one of the two location data types.

Type Prefix Character Location Data Type

Example Description

_ underscore cloc cartesian location

number sign ploc precision location

Examples here _point2
here #dispense9
here thisloc ;; defaults to cartesian

Example here

Result NAME X
TRACKX

Y
TRACKY

Z ZROT YROT XROT

WORLD (mm) (mm) (mm) (deg) (deg) (deg)

0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000

RAPL-3 Language Same as here().

RAPL-II Same as HERE.

See Also new makes a new variable
wact displays robot position

Category Variables, Values, and Locations

home
Description Homes all axes or specified axes.

Syntax home [axis [, axis [, axis . . .]]]

Parameters A list of optional parameters

axis which axis to home

 If no parameters are given, homes all axes.

50 Application Development Guide: Application Shell (ash)

99-05-06

Examples home
home 7
home 2,3,4

RAPL-3 Language Similar to home().

RAPL-II Same as HOME.

See Also cal calibrates axes

Category Calibration, Homing, and Status

input
Description Examines the state of a parallel I/O (input/output) channel. Displays the

state or stores the state in an integer variable.

Syntax input channel [, variable]

Parameters One required and one optional parameter.

channel the number of the parallel I/O line to check, 1 . . . 16

variable the variable to store the result

 If no variable is used, the result is displayed instead of stored in a variable.

Examples input 2
input 4, x

Example & Result input 2
 input 2 = 0

RAPL-3 Language Same as input().

RAPL-II Same as IFSIG.

See Also output sets the state of an output channel

Category Input/Output

joint
Description Rotates a rotational joint (of an articulated arm) by a specified number of

degrees, or moves a linear joint (of a track or gantry) by a specified number
of current units (metric or English).

Syntax joint axis, distance

Parameters Two required parameters.

axis the axis being moved: an int

distance the distance of travel: a float (positive or negative)
an integer is converted to a float

Examples joint 1 22.5
joint 2 +30
joint 3 -15.0
joint 7 200

RAPL-3 Language Same as joint().

chapter 3: Application Shell Commands 51

99-05-06

RAPL-II Same as JOINT.

See Also motor rotates a motor by specified encoder pulses

Category Motion

limp
Description Limps one joint, more than one joint, or all joints.

Warning Limping releases the joint and the link can fall due to gravity. Carelessly
limping axes, especially joints 2 (shoulder) and 3 (elbow), can cause a fall
which can cause damage.

F3 joints will move little or none, although starting from a straight-out
position, joints 2 and 3 will move slowly. You can safely limp from the calrdy
position.

A465 and A255 joints will fall quickly. Support the arm. It is not safe to limp
the arm from any position without adequate support.

Syntax limp [axis] [, axis] ...

Parameters One or more optional parameter. If no parameter is given then all axes are
limped.

axis the axis to be limped

 If no parameter is given then all axes are limped.

Examples limp
limp 1
limp 4, 5, 6
limp 7

RAPL-3 Language Same as limp().

RAPL-II Same as LIMP.

See Also nolimp unlimps joint(s)
calrdy moves to the calibration ready (zero) position

Category Motion

linacc
Displays or sets the linear acceleration.

See linacc_set

linacc_set
Alias linacc
Description Displays the current value of the robot’s linear acceleration or sets it to the

value specified.

52 Application Development Guide: Application Shell (ash)

99-05-06

Display
Syntax linacc_set

Parameters none

Example linacc_set

Result Current Linear Acceleration is 100.000

Set
Syntax linacc_set acc

Parameter Takes one parameter.

acc the acceleration in the current engineering unit system
(English or Metric); a float

Examples linacc_set 95.5
linacc_set 120

RAPL-3 Language Same as linacc_set(), linacc_get().

RAPL-II Same as @CLINACC

See Also accel displays/sets acceleration
linspd_set displays/sets linear speed
speed displays/sets speed
rotacc_set displays/sets rotational acceleration

Category Arm Configuration

linspd
Displays or sets the linear speed.

See linspd_set

linspd_set
Alias linspd
Description Displays the current value of the robot’s linear speed or sets it to the value

specified.

Display
Syntax linspd_set

Parameters none

Example linspd_set

Result Current Linear Speed is 10.0000

chapter 3: Application Shell Commands 53

99-05-06

Set
Syntax linspd_set speed

Parameter Takes one parameter.

speed the speed in the current engineering unit system (English or
Metric); a float

Examples linspd_set 25.5
linspd_set 15

RAPL-3 Language Same as linspd_set(), linspd_get().

RAPL-II Same as @CLINSPD

See Also accel displays/sets acceleration
linacc_set displays/sets linear acceleration
speed displays/sets speed
rotspd_set displays/sets rotational acceleration

Category Arm Configuration

list
Description Lists variables in the current database. Lists: data type, whether taught or

not, name and value for simple types.

Syntax list [type]

Parameters One optional parameter.

type the data type to list only variables of that type, any one of:
int integer
float floating point number
string string
cloc cartesian location
ploc precision location
gloc generic location

Examples list
list cloc
list int

Example & Result list
 Variables: (* indicates not yet taught)

int number_of_loops = 10
int counter = 1
ploc * pick_1
cloc * place_1

See Also erase erases a variable and value
eraseall erases all variables and values
new makes a new variable
print prints the value of a variable

54 Application Development Guide: Application Shell (ash)

99-05-06

set set a value to a variable
ls (system shell) lists directory contents

Category Variables, Values, and Locations

lock
Description Locks one or more joints.

Caution Motion with move or moves can cause unexpected arm motion.

Syntax lock axis [, axis] ...

Parameters One required and other optional parameters.

axis the axis to be locked

Examples lock 7
lock 2, 3, 4, 5

RAPL-3 Language Same as lock().

RAPL-II Same as LOCK.

See Also unlock unlocks joint(s)

Category Motion

merge
Description Merges variables and their values from a file into the current database.

 A conflict occurs when a variable in the file has the same name as a variable
in the database. If a conflict occurs, the system prompts to accept (copy) the
value from the file into the database, over-writing the existing database
value.

Syntax merge file_name

Parameter One required parameter.

file_name the name of the file to merge from

Responses In cases of conflict, the message displays:

Variable name: accept new value (yes/no/all/ignore)?

Responses are:

Response Description
Letter Word
y yes Accept the file value for this variable.

Lose the existing database value.

n no Reject the file value for this variable.
Keep the existing database value.

a all Accept the file values for all variables.
Lose any conflicting existing database values.

chapter 3: Application Shell Commands 55

99-05-06

I ignore Reject the file values for all variables.
Keep the existing database values.

See Also save saves variables and values from database to a file

Category Variables, Values, and Locations

motor
Description Rotates a motor by a specified number of encoder pulses.

Syntax motor axis, pulses

Parameters Two required parameters.

axis the axis being rotated: an int

pulses the number of encoder pulses: an int (positive or negative)

Examples motor 1, 4500
motor 2, +1500
motor 3, -2500
motor 7, 10500

RAPL-3 Language Same as motor() without third parameter of condition.

RAPL-II Same as MOTOR without third parameter of condition.

See Also joint rotates joint by value given in degrees

Category Motion

move, moves
Description Moves the tool tip to a specified location.

The motion from the current position is joint interpolated with move and
cartesian interpolated, straight line, with moves.

Syntax move location_name
moves location_name

Parameters One required parameter.

location_na
me

the destination location

Examples move point1
moves place_2

RAPL-3 Language Same as move(), moves().

RAPL-II Same as MOVE without and with the s parameter.

See Also appro/appros moves to an approach position
depart/departs moves to a depart position
finish finishes current motion

Category Motion

56 Application Development Guide: Application Shell (ash)

99-05-06

new
Description Creates a new variable in the current database. Similar to a declaration in a

RAPL-3 program using an implicit declaration prefix.

Syntax new type_prefix-
variable_name[dimension_size][dimension_size]...

Parameters One required parameter which has two parts and optional dimension(s).

type_prefix the prefix indicating data type

variable_name the name of the variable

dimension_siz
e

the size of a dimension for an array

 The variable name follows the rules for RAPL-3 identifiers.

• begins with a letter

• one or more letters, digits, or _ (underscore) characters

• any combination of uppercase (ABCDE) or lowercase (abcde)

The type prefix indicates one of the five data types.

Type Prefix Character Data Type

Example Description

none int integer

% percent sign float floating point number

$ dollar sign string[] string of characters

_ underscore cloc cartesian location

number sign ploc precision location

Arrays are made by giving dimensions. The square brackets are necessary.
The dimension size in the new command is a positive integer. The variable’s
index numbering begins at zero.
new %calc[3] a one-dimensional array of floats

calc[0], calc[1], and calc[2]
new
$message[20][5]

a one-dimensional array of strings,
each string able to hold 20 characters,
message[0] to message [4]

new
#pallet[6][12]

a two-dimensional array of plocs,
pallet[0][0] to pallet[5][11]

The limits on dimensions of arrays are: one dimension of string and two
dimension of int, float, cloc, and ploc.

Limits on Dimensions of Arrays

Data Type Limit

int two dimensions

chapter 3: Application Shell Commands 57

99-05-06

float two dimensions

string[] one dimension

cloc two dimensions

ploc two dimensions

Examples new counter
new %difference
new $message[20]
new _safe
new #dispense
new #pallet[12][8]

See Also erase erases a variable and value
eraseall erases all variables and values
list lists variables and values
print prints the value of a variable
set set a value to a variable

Category Variables, Values, and Locations

nolimp
Description Unlimps one, more than one, or all joints.

Syntax nolimp [axis [, axis]…]

Parameter Zero or more optional parameters. If no parameter is given then all axes are
unlimped.

axis the axis to be unlimped

Examples nolimp 1
nolimp 4, 5, 6

RAPL-3 Language Same as nolimp().

RAPL-II Same as NOLIMP.

See Also limp limps joint(s)

Category Motion

online
Description Sets the online mode to the specified value.

Syntax online mode

Parameter One required parameter.

mode the online mode to be set, one of:
0 off space in queue for 1 motion command
1 on space in queue for 8 motion command
2 wait fill queue with motion commands

58 Application Development Guide: Application Shell (ash)

99-05-06

3 proceed begin execution of commands
4 track enable sensor tracking inputs
5 notrack disable sensor tracking inputs

Examples online 1

RAPL-3 Language Same as online().

RAPL-II Same as ONLINE.

See Also finish finishes one motion

Category Motion

output
Description Sets the state of a parallel I/O (input/output) channel.

Syntax output channel , state

Parameters Two required parameters.

channel the number of the parallel I/O line to set, 1 . . . 16

state the state of the output, one of:

0 off

1 on

Examples output 2, 0
output 4, 1

RAPL-3 Language Same as output().

RAPL-II Same as OUTPUT with different parameters.

See Also input examines the state of an input channel

Category Input/Output

pendant
Description Starts and transfers control to the teach pendant. If the pendant software is

already running, then only point of control is transferred.

Control is transferred back from the pendant by pressing SHIFT and ESC
together on the pendant keyboard.

The application shell will not allow you to exit if the pendant has point of
control. At the teach pendant keypad, press Shift + ESC to transfer control
to ASH. The transfer function can also be reached by repeatedly pressing
ESC to move up the hierarchy of screens to the Terminate Pendant screen.

Syntax pendant

Parameters There are no parameters.

Example pendant

chapter 3: Application Shell Commands 59

99-05-06

Result Starting pendant...
Transferring robot control to the pendant

See Also exit
Category Pendant

pitch, pitchs
Description Pitches the tool centre point by a specified angle about the tool Y axis.

The motion from the current position is joint interpolated with pitch and
cartesian interpolated, straight line, with pitchs. With the pitchs command,
the tool tip stays on the tool y axis, in the same place, while the tool rotates
around the axis.

Caution The pitchs command should only be used with online mode on.

Syntax pitch angle
pitchs angle

Parameters One required parameter.

angle the amount of rotation in degrees

Examples pitch 22.5
pitchs 10

RAPL-3 Language Same as pitch() and pitchs().

RAPL-II No equivalent. In RAPL-3, pitch is a rotation in the tool frame of reference. In
RAPL-II, PITCH was a rotation in the world frame of reference.

See Also yaw, yaws yaw the tool by a specified angle
roll, rolls roll the tool by a specified angle
xrot, xrots rotate the tool about the world X axis
yrot, yrots rotate the tool about the world Y axis
zrot, zrots rotate the tool about the world Z axis

Category Motion

print
Alias ?
Description Displays (prints to screen) the value of a variable in the current database.

For an array, displays the entire contents of the array.

Syntax print variable_name
? variable_name

Parameters One required parameter:
variable_nam
e

the name of the variable whose value is to be printed

Example print number_of_cycles
Result = 10

See Also erase erases a variable and value
eraseall erases all variables and values

60 Application Development Guide: Application Shell (ash)

99-05-06

list lists variables and values
new creates a new variable
set sets a value to a variable

Category Variables, Values, and Locations

quit
Quits the current application shell.

See exit

ready
Description Moves the arm to the ready position.

Syntax ready

Parameter There are no parameters.

Example ready

RAPL-3 Language Same as ready().

RAPL-II Same as READY.

See Also calrdy moves to the calrdy position

Category Motion

refresh
Description Refreshes the database from the program file. Used after a newer program

file has been transferred to the controller.

The refresh command compares the age of the program file and the variable
file. If the program file is newer (implying that the program has just been
transferred to the controller), then ASH refreshes the variable file and adds
any new teachable variables to the database.

This command is designed to work with a single program file in an
application.

Syntax refresh

Parameter There are no parameters.

Example refresh

See Also merge merge in the contents of another v3 file
save explicitly save the current database to another file

Category Variables, Values, and Locations

chapter 3: Application Shell Commands 61

99-05-06

robotver
Description Displays the robot version, the strings embedded in the robot kinematics

code. This is useful in helping CRS to remotely diagnose problems.

Syntax robotver

Parameters There are no parameters.

Examples robotver

Result Version string: 'Rapl-3 Kin Core build 109 - A255 Kinematics
Model v2.0D, Jun 18 1998 11:02:43'

RAPL-3 Language Same as verstring_get().

RAPL-II Same as verstring_get().

See Also ver displays version information about ASH

Category Calibration, Homing, and Status

roll, rolls
Description Rolls the tool by a specified angle about the tool “approach/depart” axis.

The motion from the current position is joint interpolated with roll and
cartesian interpolated, straight line, with rolls. With the rolls command, the
tool tip stays on the axis, in the same place, while the tool rotates around the
axis.

Caution The rolls command should only be used with online mode on.

Syntax roll angle
rolls angle

Parameters One required parameter.

angle the amount of rotation in degrees

Examples roll 45
rolls 22.5

RAPL-3 Language Same as roll() and rolls().

RAPL-II No equivalent. In RAPL-3, roll is a rotation in the tool frame of reference. In
RAPL-II, ROLL was a rotation in the world frame of reference.

See Also pitch, pitchs pitchs the tool by a specified angle
yaw, yaws yaws the tool by a specified angle
xrot, xrots rotates the tool about the world X axis
yrot, yrots rotates the tool about the world Y axis
zrot, zrots rotates the tool about the world Z axis

Category Motion

62 Application Development Guide: Application Shell (ash)

99-05-06

rotacc
Sets or displays the maximum rotational acceleration.

See rotacc_set

rotacc_set
Alias rotacc
Description This parameter is used to set the maximum rotational acceleration the robot

can achieve. The value is used when performing straight line motions in
online mode and when using the teach pendant. It is not possible to set the
value of this parameter to be greater than the default value which is robot
dependent. Units are given in degrees/sec/sec.

Syntax rotacc_set [value]

Parameters If the value parameter is omitted, then rotacc_set simply displays the
current value of the rotational acceleration.

Example1 rotacc_set

Sample Result Current Rotational Acceleration is 25.0

Example2 rotacc_set 30

Result The rotational acceleration is set to 30 degrees/sec/sec

RAPL-3 Language Same as rotacc_set() and rotacc_get()
RAPL-II Same as @CROTACC

See Also accel displays/sets acceleration
linacc_set displays/sets linear acceleration
linspd_set displays/sets linear speed
rotspd_set displays/sets rotational speed
speed displays/sets speed

Category Motion

rotspd
Sets or displays the maximum rotational speed.

See rotspd_set

rotspd_set
Alias rotspd
Description This parameter is used to set the maximum rotational speed the robot can

achieve. The value is used when performing straight line motions in online
mode and when using the teach pendant. It is not possible to set the value

chapter 3: Application Shell Commands 63

99-05-06

of this parameter to be greater than the default value which is robot
dependent. Units are given in degrees/sec.

Syntax rotspd_set [value]

Parameters If the value parameter is omitted, then rotspd_set simply displays the
current value of the rotational acceleration.

Example1 rotspd_set

Sample Result Current Rotational Speed is 180.0

Example2 rotspd_set 120

Result The rotational speed is set to 120 degrees/sec/sec

RAPL-3 Language Same as rotspd_set() and rotspd_get()
RAPL-II Same as @CROTSPD

See Also accel displays/sets acceleration
linacc_set displays/sets linear acceleration
linspd_set displays/sets linear speed
rotacc_set displays/sets rotational acceleration
speed displays/sets speed

Category Motion

run
Description Runs (executes) the application’s program.

Runs the program file with the same name as the current application and
uses the variable file with the same name. For example, in the application
named test, runs “test” with “test.v3”.

Syntax run

Parameters There are no parameters.

Examples run

See Also file_name runs a specified program and specified variable file

Category Execution

save
Description Saves variables and values from the current database to a variable file.

If no file name is specified, the system saves to a file with the same name as
the application. For example, in the application “test”, it saves to “test.v3”.

Syntax save [file_name]

Parameter One optional parameter.

file_name the name of the variable file

The file name can include a path to another directory.

The .v3 extension is optional. If not specified, it is added by the system.

64 Application Development Guide: Application Shell (ash)

99-05-06

Examples save
save test
save test.v3
save \app\final\final.v3

See Also merge merges variables from a file to the database

Category Variables, Values, and Locations

servoerr
Description Display the servo error detection parameters for each axis.

Syntax servoerr

Parameters There are no parameters.

Examples servoerr

Result Servo Error Detection Parameters are as follows:

Overspeed Collision Runaway Timeout
Threshold Error Max Error Max Threshold

(pulses/cycle) (pulses) (pulses) (cycles)
Axis 1: 230, 500, 1000, 100
Axis 2: 230, 500, 1000, 100
Axis 3: 230, 500, 1000, 100
Axis 4: 300, 500, 1000, 100
Axis 5: 230, 500, 1000, 100
Axis 6: 300, 500, 1000, 100

RAPL-3 Language Similar to servoerr_params().

RAPL-II Similar to @SERVERR.

Category Arm Configuration

set
Alias !
Description Sets (assigns) a value to a variable in the current database.

If a variable does not exist, you can create a variable and set a value at the
same time. Use a prefix to specify the data type, as detailed with the new
command.

Syntax set variable_name = value
! variable_name = value
set type_prefix-variable_name = value
! type_prefix-variable_name = value

Parameters Two required parameters:

variable_n
ame

the variable in the database

value the value being assigned to the variable, either:
a constant any one of:

a signed or unsigned integer

chapter 3: Application Shell Commands 65

99-05-06

signed or unsigned floating point number
a simple string in double quotes
a cartesian location in the form:
{ x, y, z, yaw, pitch, roll, e1, e2}

a variable variable_name_2, any variable in the
database
a scalar variable: variable_name_2
a one dimensional array:
variable_name_2[index]

a two dimensional array:
variable_name_2[index][index]

If you set the value with a second variable, any subsequent value settings of
that second variable do not affect the first variable.

To set the value using a second variable, that second variable must already
be in the database.

Examples set number_of_loops = 100
! number_of_loops = 100
set place[2][3] = {20,15,5,0,-90,0,0,0}
set safe_place_5 = safe_place_1
set inspect[8] = dispense[8]

See Also erase erases a variable and value
eraseall erases all variables and values
list lists variables and values
new creates a new variable
print displays the value of a variable

Category Variables, Values, and Locations

speed
Description Displays the current speed setting, or sets the speed for all subsequent

motions.

Display
Syntax speed

Parameters none

Example speed

Result Current speed is 25

Set
Syntax speed percent

Parameter Takes one parameter.

Percent the percentage of full speed: an int

66 Application Development Guide: Application Shell (ash)

99-05-06

Examples speed 50
speed 25

RAPL-3 Language Same as speed_get(), speed_set(), and their alias, speed().

RAPL-II Same as SPEED.

See Also accel displays/sets acceleration
linacc_set displays/sets linear acceleration
linspd_set displays/sets linear speed
rotacc_set displays/sets rotational acceleration
rotspd_set displays/sets rotational speed

Category Motion

stance
Alias stance_set
Description Displays the current stance setting, or places the arm in a specified stance.

 Stance is a specific configuration of a joint or joints.

Display
Syntax stance

Parameters There are no parameters.

Example stance

Result Requested stance: forward up free
Physical stance: forward up noflip

Set
Syntax stance shoulder|elbow|wrist

Parameters Three required parameters as one string.

shoulder the stance of the shoulder, one of:
f forward toward front of arm
b back toward back of arm
x free controller chooses closest to current position
p previous last commanded stance position
c current current arm configuration

elbow the stance of the elbow, one of:
u up away from base
d down towards base
x free controller chooses closest to current position
p previous last commanded stance position
c current current arm configuration

chapter 3: Application Shell Commands 67

99-05-06

wrist the stance of the wrist, one of:
f flip 4 and 5 rotated 180° and 5 reversed
n noflip no rotation or reversal
x free controller chooses closest to current position
p previous last commanded stance position
c current current arm configuration

Examples stance fun
stance xxx

RAPL-3 Language Same as stance_get(), stance_set().

RAPL-II Same as POSE.

Category Motion

stance_set
Displays the current stance setting, or places the arm in a specified stance.

See stance

tool
Alias tool_set
Description Displays the current tool transform or sets a tool transform, a re-definition

of the origin point and orientation of the tool coordinate system.

If a tool transform is set, then the cfg_save command must be used in order
to save it as part of the robot power on configuration. Do not run cfg_save if
the tool transform being set is not the one that you want the robot to power
on with.

Display
Syntax tool

Parameters There are no parameters.

Example tool

Result Tool Transform is:
tx=0.00000, ty=0.00000, tz=150.00000, yaw=0.00000,
pitch=0.00000, roll=0.00000

Set
Syntax tool x, y, z, yaw, pitch, roll

Parameters Six required parameters.

x the distance along the X axis, in current units: a float

y the distance along the Y axis, in current units: a float

68 Application Development Guide: Application Shell (ash)

99-05-06

z the distance along the Z axis, in current units: a float

yaw the rotation around the “normal” axis, in degrees: a float
 on an F3, rotation around the tool X axis,
 on an A465 or A255, rotation around the tool Z axis

pitc
h

the rotation around the “orientation” axis, in degrees: a float
 on an F3, A465, or A255, rotation around the tool Y axis

roll the rotation around the “approach/depart” axis, in degrees: a float
 on an F3, rotation around the tool Z axis,
 on an A465 or A255, rotation around the tool X axis

Examples tool 2.0, 0.0, 3.0, 0.0, 90.0, 0.0

RAPL-3 Language Same as tool_get(), tool_set().

RAPL-II Same as TOOL.

See Also cfg_save save robot configuration
base displays/sets a base offset

Category Coordinate Systems

tool_set
Displays the current tool transform or sets a tool transform.

See tool

tshift
Description Modifies a location by a specified distance and rotation in the tool

coordinated system, a tool system shift.
Syntax tshift location, toolX, toolY, toolZ, yaw, pitch, roll

Parameters Seven required parameters

location the cartesian location variable to modify

toolX the offset in the tool X direction.

toolY the offset in the tool Y direction.

toolZ the offset in the tool Z direction.

yaw the rotation around the “normal” axis, in degrees
 on an F3, rotation around the tool X axis,
 on an A465 or A255, rotation around the tool Z axis

pitch the rotation around the “orientation” axis, in degrees
 on an F3, A465, or A255, rotation around the tool Y axis

roll the rotation around the “approach/depart” axis, in degrees
 on an F3, rotation around the tool Z axis,
 on an A465 or A255, rotation around the tool X axis

Example tshift myloc, 1.5, 0, 0, 0, 0, 22.5

RAPL-3 Language Same as shift_t().

chapter 3: Application Shell Commands 69

99-05-06

RAPL-II No equivalent.

See Also wshift shift a location in the world coordinate system

Category Coordinate Systems

tx, txs
Description In the tool frame of reference, jogs the tool centre point along the X axis by a

specified amount.

The motion is joint interpolated with tx and cartesian interpolated, straight
line, with txs.

Syntax tx distance
txs distance

Parameters There is one required parameter.

distance the distance to move the tool centre point, in the current units

Examples tx -100
txs 4.5

RAPL-3 Language Same as jog_t(TOOL_X), tx, and jog_ts(TOOL_X), txs.

RAPL-II No equivalent. Similar to JOG, but in the tool frame of reference.

See Also ty, tys jog the tool centre point along the tool Y axis
tz, tzs jog the tool centre point along the tool Z axis
yaw, yaws jog the tool centre point around the tool “normal” axis
pitch, pitchs jog the tool centre point around the tool “orientation” axis
roll, rolls jog the tool centre point around the tool “approach” axis

Category Motion

ty, tys
Description In the tool frame of reference, jogs the tool centre point along the Y axis by a

specified amount.

The motion is joint interpolated with ty and cartesian interpolated, straight
line, with tys.

Syntax ty distance
tys distance

Parameters There is one required parameter.

distance the distance to move the tool centre point, in the current units

Examples ty 20
tys –4.5

RAPL-3 Language Same as jog_t(TOOL_Y), ty, and jog_ts(TOOL_Y), tys.

RAPL-II No equivalent. Similar to JOG, but in the tool frame of reference.

See Also tx, txs jog the tool centre point along the tool X axis
tz, tzs jog the tool centre point along the tool Z axis
yaw, yaws jog the tool centre point around the tool “normal” axis

70 Application Development Guide: Application Shell (ash)

99-05-06

pitch, pitchs jog the tool centre point around the tool “orientation” axis
roll, rolls jog the tool centre point around the tool “approach” axis

Category Motion

tz, tzs
Description In the tool frame of reference, jogs the tool centre point along the Z axis by a

specified amount.

The motion is joint interpolated with tz and cartesian interpolated, straight
line, with tzs.

Syntax tz distance
tzs distance

Parameters There is one required parameter.

distance the distance to move the tool centre point, in the current units

Examples tz 300
tzs –4.5

RAPL-3 Language Same as jog_t(TOOL_Z), tz, and jog_ts(TOOL_Z), tzs.

RAPL-II No equivalent. Similar to JOG, but in the tool frame of reference.

See Also tx, txs jog the tool centre point along the tool X axis
ty, tys jog the tool centre point along the tool Y axis
yaw, yaws jog the tool centre point around the tool “normal” axis
pitch, pitchs jog the tool centre point around the tool “orientation” axis
roll, rolls jog the tool centre point around the tool “approach” axis

Category Motion

unlock
Description Unlocks one, more than one, or all joints.

Syntax unlock [axis], [axis] ...

Parameters Zero or more optional parameters. If no parameter is given then all axes are
unlocked.

axis the axis to be unlocked

Examples unlock 7
unlock 2, 3

RAPL-3 Language Same as unlock().

RAPL-II Same as UNLOCK.

See Also lock locks joint(s)

Category Motion

chapter 3: Application Shell Commands 71

99-05-06

use
Description For systems with more than one robot.

Displays or selects the robot for communication with ASH. More specifically,
displays or selects the socket of interprocess communication.

Display
Syntax use

Parameters none

Example use

Result using ‘DEFAULT’

Select
Syntax use socket

Parameters One parameter, a string between double quotes.

socket the path to the socket in the filesystem: a string

DEFAULT the string to reset to the default robot

Examples use “/dev/robot”
use “DEFAULT”

RAPL-3 Language Same as server_set / server_get

RAPL-II No equivalent.

Category Machine

w0
Displays the commanded position.

See wcmd

w1
Description Continually displays the actual position (where the arm has actually gone),

in motor pulses. Is terminated by typing Ctrl-E.

Syntax w1

Parameter There are no parameters.

Example w1

Result Actual Position (motor pulses):
-1 -2 -1 -1 -5

72 Application Development Guide: Application Shell (ash)

99-05-06

RAPL-3 language Similar to pos_get().

RAPL-II Same as W1.

See Also wact displays the actual position

Category Calibration, Homing, and Status

w2
Displays the actual position.

See wact

w3
Description Continually displays the commanded position (where the controller has

commanded the arm to go), in motor pulses. Is terminated by typing Ctrl-E.

Syntax w3

Parameters There are no parameters.

Examples w3

Result Commanded Position (motor pulses):
-1 -2 -1 -1 -5

RAPL-3 language Similar to pos_get().

RAPL-II Same as W3.

See Also wcmd displays commanded position

Category Calibration, Homing, and Status

w4
Displays the endpoint position.

See wend

w5
Description Continually displays the position error, that is, the difference between where

the controller has commanded the arm to go and where it actually is, in
motor pulses. Is terminated by typing Ctrl-E.

Syntax w5

Parameters There are no parameters.

Examples w5

Result Position Error (motor pulses):
+0 +0 +0 +0 +0 +0 +0

RAPL-3 language Similar to pos_get().

chapter 3: Application Shell Commands 73

99-05-06

RAPL-II Same as W5.

See Also wact displays actual position
wcmd displays commanded position

Category Calibration, Homing, and Status

wact
Alias w2
Description Displays the actual robot position in motor counts, joint angles and world

coordinates. Displays where actual.

Syntax wact

Parameters There are no parameters.

Example wact

Result Actual Position :

Axis 1/7 Axis 2/8 Axis 3 Axis 4 Axis 5 Axis 6
PULSES -1 -34 -1 -1 -5 +0

+0 +0

Axis 1/7 Axis 2/8 Axis 3 Axis 4 Axis 5 Axis 6
JOINTS -0.005 +0.170 -0.005 +0.022 -0.270 +0.000

+0.000 +0.000

X/TrackX Y/TrackY Z Z-Rot Y-Rot X-Rot
WORLD (in) (in) (in) (deg) (deg) (deg)

+22.000 -0.002 +10.030 -0.005 -0.023 -0.270
+0.000 +0.000

RAPL-3 Language Similar to pos_get().

RAPL-II Same as W2.

See Also wcmd where commanded
wend where endpoint
here stores or displays current robot position

Category Calibration, Homing, and Status

wcmd
Alias w0
Description Displays the commanded position (where the controller has commanded the

arm to go), in motor pulses, joint angles, and world coordinates. Displays
where commanded.

Syntax wcmd

Parameters There are no parameters.

Example wcmd

Result Commanded Position :

74 Application Development Guide: Application Shell (ash)

99-05-06

Axis 1/7 Axis 2/8 Axis 3 Axis 4 Axis 5 Axis 6
PULSES -1 -34 -1 -1 -5 +0

+0 +0

Axis 1/7 Axis 2/8 Axis 3 Axis 4 Axis 5 Axis 6
JOINTS -0.005 +0.170 -0.005 +0.022 -0.270 +0.000

+0.000 +0.000

X/TrackX Y/TrackY Z Z-Rot Y-Rot X-Rot
WORLD (in) (in) (in) (deg) (deg) (deg)

+22.000 -0.002 +10.030 -0.005 -0.023 -0.270
+0.000 +0.000

RAPL-3 Language Similar to pos_get().

RAPL-II Same as W0.

See Also wact where actual
wend where endpoint
here stores or displays current robot position

Category Calibration, Homing, and Status

wend
Alias w4
Description Displays the robot endpoint position in motor pulses, joint angles and world

coordinates. Displays where endpoint.

Syntax wend

Parameters There are no parameters.

Example wend

Result Endpoint Position:

Axis 1/7 Axis 2/8 Axis 3 Axis 4 Axis 5 Axis 6
PULSES +0 +0 -51200 +0 +0 +0

+204032 +0

Axis 1/7 Axis 2/8 Axis 3 Axis 4 Axis 5 Axis 6
JOINTS +0.000 +0.000 -90.000 +0.000 +0.000 +0.000

+59.023 +0.000

X/TrackX Y/TrackY Z Z-Rot Y-Rot X-Rot
WORLD (in) (in) (in) (deg) (deg) (deg)

+17.520 +0.000 +24.213 +0.000 +90.000 +0.000
+59.023 +0.000

RAPL-3 Language Similar to pos_get().

RAPL-II Same as W4.

See Also wact where actual
wcmd where commanded
here stores or displays current robot position

Category Calibration, Homing, and Status

chapter 3: Application Shell Commands 75

99-05-06

wgrip
Description Displays the current distance between fingers of a servo gripper. Displays

what gripper distance.

 Gripper type must be set to 2 (servo) for this wgrip command to work.

Syntax wgrip

Parameters There are no parameters.

Example wgrip

Result Gripper distance = 2.80473

RAPL-3 Language Same as gripdist_get().

RAPL-II Same as !X=WGRIP().

See Also grip moves fingers to specified distance
gtype displays/sets the type of gripper used (air, servo, none)

Category Gripper

wshift
Description Modifies a location by a specified distance and rotation in the world

coordinate system, a world system shift.
Syntax wshift location, worldX, worldY, worldZ, zrot, yrot, xrot

Parameters Seven required parameters:

location the cartesian location variable to modify

worldX the offset in the world X direction

worldY the offset in the world Y direction

worldZ the offset in the world Z direction

zrot the rotation about the world Z axis, in degrees

yrot the rotation about the world Y axis, in degrees

xrot the rotation about the world X axis, in degrees

Examples wshift myloc, 62.5, 0, 0, 0, 0, 45

RAPL-3 Language Same as shift_w().

RAPL-II Same as SHIFTA.

See Also tshift shift a location in the tool coordinate system

Category Coordinate Systems

76 Application Development Guide: Application Shell (ash)

99-05-06

wx, wxs
Description In the world frame of reference, jogs the tool centre point along the X axis by

a specified amount.

The motion is joint interpolated with wx and cartesian interpolated, straight
line, with wxs.

Syntax wx distance
wxs distance

Parameters One required parameter.

distance the distance to move the tool centre point, in the current units

Examples wx 200
wxs –4.5

RAPL-3 Language Same as jog_w(WORLD_X), wx() and jog_ws(WORLD_X), wxs().

RAPL-II Same as X. Similar to JOG.

See Also wy, wys jog the tool centre point along the world Y axis
wz, wzs jog the tool centre point along the world Z axis
xrot, xrots jog the tool centre point around the world X axis
yrot, yrots jog the tool centre point around the world Y axis
zrot, zrots jog the tool centre point around the world Z axis

Category Motion

wy, wys
Description In the world frame of reference, jogs the tool centre point along the Y axis by

a specified amount.

The motion is joint interpolated with wy and cartesian interpolated, straight
line, with wys.

Syntax wy distance
wys distance

Parameters One required parameter.

distance the distance to move the tool centre point, in the current units

Examples wy 300
wys –4.5

RAPL-3 Language Same as jog_w(WORLD_Y), wy() and jog_ws(WORLD_Y), wys().

RAPL-II Same as Y. Similar to JOG.

See Also wx, wxs jog the tool centre point along the world X axis
wz, wzs jog the tool centre point along the world Z axis
xrot, xrots jog the tool centre point around the world X axis
yrot, yrots jog the tool centre point around the world Y axis
zrot, zrots jog the tool centre point around the world Z axis

Category Motion

chapter 3: Application Shell Commands 77

99-05-06

wz, wzs
Description In the world frame of reference, jogs the tool centre point along the Z axis by

a specified amount.

The motion is joint interpolated with wz and cartesian interpolated, straight
line, with wzs.

Syntax wz distance
wzs distance

Parameters One required parameter.

distance the distance to move the tool centre point, in the current units

Examples wz 400
wzs –4.5

RAPL-3 Language Same as jog_w(WORLD_Z), wz() and jog_ws(WORLD_Z), wzs().

RAPL-II Same as Z. Similar to JOG.

See Also wx, wxs jog the tool centre point along the world X axis
wy, wys jog the tool centre point along the world Y axis
xrot, xrots jog the tool centre point around the world X axis
yrot, yrots jog the tool centre point around the world Y axis
zrot, zrots jog the tool centre point around the world Z axis

Category Motion

ver
Description Displays the version of the application shell being used.

Syntax ver

Parameter There are no parameters.

Example ver

Result ash (application shell) Revision: 1.62

RAPL-3 Language No equivalent.

RAPL-II No equivalent.

See Also ver (in the system shell) displays version of the system shell
crosver displays version of CROS

Category Start Up and Exit

xrot, xrots
Description In the world frame of reference, jogs the tool centre point around the X axis

by a specified amount. Performs an X rotation.

The motion is joint interpolated with xrot and cartesian interpolated, straight
line, with xrots.

78 Application Development Guide: Application Shell (ash)

99-05-06

Syntax xrot angle
xrots angle

Parameters One required parameter.

angle the distance to move the tool centre point, in degrees

Examples xrot 45
xrots -22.5

RAPL-3 Language Same as jog_w(WORLD_XROT), xrot() and jog_ws(WORLD_XROT), xrots().

RAPL-II Same as ROLL. In RAPL-II, ROLL was the rotation in the world frame of
reference around the X axis. In RAPL-3, this is called xrot.

See Also yrot rotation around the world Y axis
zrot rotation around the world Z axis
wx jog along the world X axis
wy jog along the world Y axis
wz jog along the world Z axis

Category Motion

yaw, yaws
Description Yaws, rotates, the tool by a specified angle about the tool “normal” axis.

The motion from the current position is joint interpolated with yaw and
cartesian interpolated, straight line, with yaws. With the yaws command, the
tool centre point stays on the axis, in the same place, while the tool rotates
around the axis.

Caution The yaws command should only be used with online mode on.

Syntax yaw angle
yaws angle

Parameters There is one required parameter.

angle the number of degrees to rotate the tool

Examples yaw 2.5
yaws 10

RAPL-3 Language Same as yaw() and yaws()

RAPL-II No equivalent. In RAPL-3, yaw is a rotation in the tool frame of reference. In
RAPL-II, YAW was a rotation in the world frame of reference.

See Also pitch, pitchs pitch the tool by a specified angle
roll, rolls roll the tool by a specified angle
xrot, xrots rotate the tool about the world X axis
yrot, yrots rotate the tool about the world Y axis
zrot, zrots rotate the tool about the world Z axis

Category Motion

chapter 3: Application Shell Commands 79

99-05-06

yrot, yrots
Description In the world frame of reference, jogs the tool centre point around the Y axis

by a specified amount. Performs a Y rotation.

The motion is joint interpolated with yrot and cartesian interpolated, straight
line, with yrots.

Syntax yrot angle
yrots angle

Parameters One required parameter.

angle the distance to move the tool centre point, in degrees

Examples yrot 45
yrots -22.5

RAPL-3 Language Same as jog_w(WORLD_YROT), yrot() and jog_ws(WORLD_YROT), yrots().

RAPL-II Same as PITCH. In RAPL-II, PITCH was the rotation in the world frame of
reference around the Y axis. In RAPL-3, this is called yrot.

See Also xrot rotation around the world X axis
zrot rotation around the world Z axis
wx jog along the world X axis
wy jog along the world Y axis
wz jog along the world Z axis

Category Motion

zrot, zrots
Description In the world frame of reference, jogs the tool centre point around the Z axis

by a specified amount. Performs a Z rotation.

The motion is joint interpolated with zrot and cartesian interpolated, straight
line, with zrots.

Syntax zrot angle
zrots angle

Parameters One required parameter.

angle the distance to move the tool centre point, in degrees

Examples zrot 45
zrots -22.5

RAPL-3 Language Same as jog_w(WORLD_ZROT), zrot() and jog_ws(WORLD_ZROT), zrots().

RAPL-II Same as YAW. In RAPL-II, YAW was the rotation in the world frame of
reference around the Z axis. In RAPL-3, this is called zrot.

See Also xrot rotation around the world X axis
yrot rotation around the world Y axis
wx jog along the world X axis
wy jog along the world Y axis
wz jog along the world Z axis

80 Application Development Guide: Application Shell (ash)

99-05-06

Category Motion

chapter 3: Application Shell Commands 81

99-05-06

Features
One system shell feature is accessible through the application shell.

&
Description Executes a program in the background. Allows you to get back the ASH

prompt to execute other commands while the program is running.

Syntax program_name &

Examples test.r:test.v3 &
test &

See Also program_name runs the program
run runs the default program

82 Application Development Guide: Application Shell (ash)

99-05-06

System Shell Commands
Most system shell commands are accessible through the application shell.
They are listed here. For details about system shell commands, see the
command descriptions in the system shell part of this Guide.

Accessible from ASH
These system shell commands are accessible through the application shell.
These are listed alphabetically.

System shell commands accessible from the application shell.

/diag/cal calibrate robot axes

/diag/calgrip calibrate the servo gripper

/diag/configur master configuration program for setting up the robot

/diag/encres reset the joint position encoders (F series only)

/diag/pack move an F3 robot into its packing position

/diag/xzero zero a particular motor position register

/diag/zero all motor position registers zero

axst display the status of the robot axes

cd change current working directory

chmod change protection mode

cksum calculate checksum of file

cp (or copy) copy file

date display or set date and time

df display space on file system

kill terminate a process

ln make link to file

ls (or dir) list directory contents

mem display space in memory

mkdev make device

mkdir (or md) make directory

mkfifo make fifo

mksock make socket

more display contents of file

mount mount a file system on a directory

mv (or move) move or rename file

pause wait for user to type enter

ps display status of processes

chapter 3: Application Shell Commands 83

99-05-06

pwd displays current working directory

rm (or del) remove/delete or unlink file

rmdir remove/delete directory

shell start new system shell

siocfg reconfigure serial port

sync defragment memory

unmount unmount a file system from a directory

The cd, kill, and mem commands are actually built in ASH.

Not Accessible from ASH
These system shell commands are not accessible from the application shell.

System shell commands NOT accessible from the application shell.

crosver display version of operating system (CROS)

do execute a shell script

echo echo a message to the console

exit exit from system shell
(the exit command in ASH exits from ASH)

help help on system shell commands
(the help command in ASH gives help on ASH commands)

msleep put system shell to sleep

shutdown shut down the system

type display contents of file

ver display version of system shell
(the ver command in ASH displays the version of ASH)

84 Application Development Guide: Application Shell (ash)

99-05-06

	Preface
	Contents
	CHAPTER 1
	Introduction

	CHAPTER 2
	ASH Basics
	ASH Commands
	Repeating Commands
	Command Completion
	Getting Help
	�Understanding the Application Shell
	Running an Application Shell
	Loading and Refreshing the Database
	Working with Variables
	Merging Data
	Saving Data
	Configuring the Arm
	Moving the Arm
	Transferring Control
	Running an Application

	CHAPTER 3
	Application Shell Commands
	Categories of Commands
	Detailed Descriptions
	Features
	System Shell Commands

