

Learning OpenCV

Gary Bradski and Adrian Kaehler

Beijing · Cambridge · Farnham · Köln · Sebastopol · Taipei · Tokyo

FM-R4886-AT1.indd iFM-R4886-AT1.indd i 9/15/08 4:26:38 PM9/15/08 4:26:38 PM

Learning OpenCV
by Gary Bradski and Adrian Kaehler

Copyright © 2008 Gary Bradski and Adrian Kaehler. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Mike Loukides

Production Editor: Rachel Monaghan

Production Services: Newgen Publishing and
Data Services

Cover Designer: Karen Montgomery

Interior Designer: David Futato

Illustrator: Robert Romano

Printing History:

September 2008: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Learning OpenCV, the image of a giant peacock moth, and related trade dress are
trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

This book uses Repkover,™ a durable and flexible lay-flat binding.

ISBN: 978-0-596-51613-0

[M]

FM-R4886-AT1.indd iiFM-R4886-AT1.indd ii 9/15/08 4:26:40 PM9/15/08 4:26:40 PM

iii

Preface . ix

Overview1. . 1

What Is OpenCV? 1

Who Uses OpenCV? 1

What Is Computer Vision? 2

The Origin of OpenCV 6

Downloading and Installing OpenCV 8

Getting the Latest OpenCV via CVS 10

More OpenCV Documentation 11

OpenCV Structure and Content 13

Portability 14

Exercises 15

Introduction to OpenCV2. . 16

Getting Started 16

First Program—Display a Picture 16

Second Program—AVI Video 18

Moving Around 19

A Simple Transformation 22

A Not-So-Simple Transformation 24

Input from a Camera 26

Writing to an AVI File 27

Onward 29

Exercises 29

Contents

FM-R4886-AT1.indd iiiFM-R4886-AT1.indd iii 9/15/08 4:26:40 PM9/15/08 4:26:40 PM

iv | Contents

Getting to Know OpenCV3. . 31

OpenCV Primitive Data Types 31

CvMat Matrix Structure 33

IplImage Data Structure 42

Matrix and Image Operators 47

Drawing Things 77

Data Persistence 82

Integrated Performance Primitives 86

Summary 87

Exercises 87

HighGUI4. . 90

A Portable Graphics Toolkit 90

Creating a Window 91

Loading an Image 92

Displaying Images 93

Working with Video 102

ConvertImage 106

Exercises 107

Image Processing5. . 109

Overview 109

Smoothing 109

Image Morphology 115

Flood Fill 124

Resize 129

Image Pyramids 130

Threshold 135

Exercises 141

Image Transforms6. . 144

Overview 144

Convolution 144

Gradients and Sobel Derivatives 148

Laplace 150

Canny 151

FM-R4886-AT1.indd ivFM-R4886-AT1.indd iv 9/15/08 4:26:40 PM9/15/08 4:26:40 PM

Contents | v

Hough Transforms 153

Remap 162

Stretch, Shrink, Warp, and Rotate 163

CartToPolar and PolarToCart 172

LogPolar 174

Discrete Fourier Transform (DFT) 177

Discrete Cosine Transform (DCT) 182

Integral Images 182

Distance Transform 185

Histogram Equalization 186

Exercises 190

Histograms and Matching7. . 193

Basic Histogram Data Structure 195

Accessing Histograms 198

Basic Manipulations with Histograms 199

Some More Complicated Stuff 206

Exercises 219

Contours8. . 222

Memory Storage 222

Sequences 223

Contour Finding 234

Another Contour Example 243

More to Do with Contours 244

Matching Contours 251

Exercises 262

Image Parts and Segmentation9. . 265

Parts and Segments 265

Background Subtraction 265

Watershed Algorithm 295

Image Repair by Inpainting 297

Mean-Shift Segmentation 298

Delaunay Triangulation, Voronoi Tesselation 300

Exercises 313

FM-R4886-AT1.indd vFM-R4886-AT1.indd v 9/15/08 4:26:40 PM9/15/08 4:26:40 PM

vi | Contents

Tracking and Motion10. . 316

The Basics of Tracking 316

Corner Finding 316

Subpixel Corners 319

Invariant Features 321

Optical Flow 322

Mean-Shift and Camshift Tracking 337

Motion Templates 341

Estimators 348

The Condensation Algorithm 364

Exercises 367

Camera Models and Calibration11. . 370

Camera Model 371

Calibration 378

Undistortion 396

Putting Calibration All Together 397

Rodrigues Transform 401

Exercises 403

Projection and 3D Vision12. . 405

Projections 405

Affine and Perspective Transformations 407

POSIT: 3D Pose Estimation 412

Stereo Imaging 415

Structure from Motion 453

Fitting Lines in Two and Three Dimensions 454

Exercises 458

Machine Learning13. . 459

What Is Machine Learning 459

Common Routines in the ML Library 471

Mahalanobis Distance 476

K-Means 479

Naïve/Normal Bayes Classifier 483

Binary Decision Trees 486

Boosting 495

FM-R4886-AT1.indd viFM-R4886-AT1.indd vi 9/15/08 4:26:40 PM9/15/08 4:26:40 PM

Contents | vii

Random Trees 501

Face Detection or Haar Classifier 506

Other Machine Learning Algorithms 516

Exercises 517

OpenCV’s Future14. . 521

Past and Future 521

Directions 522

OpenCV for Artists 525

Afterword 526

Bibliography . 527

Index . 543

FM-R4886-AT1.indd viiFM-R4886-AT1.indd vii 9/15/08 4:26:40 PM9/15/08 4:26:40 PM

FM-R4886-AT1.indd viiiFM-R4886-AT1.indd viii 9/15/08 4:26:41 PM9/15/08 4:26:41 PM

ix

Preface

Th is book provides a working guide to the Open Source Computer Vision Library

(OpenCV) and also provides a general background to the fi eld of computer vision suf-

fi cient to use OpenCV eff ectively.

Purpose
Computer vision is a rapidly growing field, partly as a result of both cheaper and more

capable cameras, partly because of affordable processing power, and partly because vi-

sion algorithms are starting to mature. OpenCV itself has played a role in the growth of

computer vision by enabling thousands of people to do more productive work in vision.

With its focus on real-time vision, OpenCV helps students and professionals efficiently

implement projects and jump-start research by providing them with a computer vision

and machine learning infrastructure that was previously available only in a few mature

research labs. The purpose of this text is to:

Better document OpenCV—detail what function calling conventions really mean •

and how to use them correctly.

Rapidly give the reader an intuitive understanding of how the vision algorithms •

work.

Give the reader some sense of what algorithm to use and when to use it.•

Give the reader a boost in implementing computer vision and machine learning algo-•

rithms by providing many working coded examples to start from.

Provide intuitions about how to fix some of the more advanced routines when some-•

thing goes wrong.

Simply put, this is the text the authors wished we had in school and the coding reference

book we wished we had at work.

This book documents a tool kit, OpenCV, that allows the reader to do interesting and

fun things rapidly in computer vision. It gives an intuitive understanding as to how the

algorithms work, which serves to guide the reader in designing and debugging vision

FM-R4886-AT1.indd ixFM-R4886-AT1.indd ix 9/15/08 4:26:41 PM9/15/08 4:26:41 PM

x | Preface

applications and also to make the formal descriptions of computer vision and machine

learning algorithms in other texts easier to comprehend and remember.

Aft er all, it is easier to understand complex algorithms and their associated math when

you start with an intuitive grasp of how those algorithms work.

Who This Book Is For
This book contains descriptions, working coded examples, and explanations of the com-

puter vision tools contained in the OpenCV library. As such, it should be helpful to many

different kinds of users.

Professionals

For those practicing professionals who need to rapidly implement computer vision

systems, the sample code provides a quick framework with which to start. Our de-

scriptions of the intuitions behind the algorithms can quickly teach or remind the

reader how they work.

Students

As we said, this is the text we wish had back in school. The intuitive explanations,

detailed documentation, and sample code will allow you to boot up faster in com-

puter vision, work on more interesting class projects, and ultimately contribute new

research to the field.

Teachers

Computer vision is a fast-moving field. We’ve found it effective to have the students

rapidly cover an accessible text while the instructor fills in formal exposition where

needed and supplements with current papers or guest lecturers from experts. The stu-

dents can meanwhile start class projects earlier and attempt more ambitious tasks.

Hobbyists

Computer vision is fun, here’s how to hack it.

We have a strong focus on giving readers enough intuition, documentation, and work-

ing code to enable rapid implementation of real-time vision applications.

What This Book Is Not
This book is not a formal text. We do go into mathematical detail at various points,* but it

is all in the service of developing deeper intuitions behind the algorithms or to make clear

the implications of any assumptions built into those algorithms. We have not attempted

a formal mathematical exposition here and might even incur some wrath along the way

from those who do write formal expositions.

This book is not for theoreticians because it has more of an “applied” nature. The book

will certainly be of general help, but is not aimed at any of the specialized niches in com-

puter vision (e.g., medical imaging or remote sensing analysis).

* Always with a warning to more casual users that they may skip such sections.

FM-R4886-AT1.indd xFM-R4886-AT1.indd x 9/15/08 4:26:41 PM9/15/08 4:26:41 PM

Preface | xi

Th at said, it is the belief of the authors that having read the explanations here fi rst, a stu-

dent will not only learn the theory better but remember it longer. Th erefore, this book

would make a good adjunct text to a theoretical course and would be a great text for an

introductory or project-centric course.

About the Programs in This Book
All the program examples in this book are based on OpenCV version 2.0. The code should

definitely work under Linux or Windows and probably under OS-X, too. Source code

for the examples in the book can be fetched from this book’s website (http://www.oreilly

.com/catalog/9780596516130). OpenCV can be loaded from its source forge site (http://

sourceforge.net/projects/opencvlibrary).

OpenCV is under ongoing development, with offi cial releases occurring once or twice

a year. As a rule of thumb, you should obtain your code updates from the source forge

CVS server (http://sourceforge.net/cvs/?group_id=22870).

Prerequisites
For the most part, readers need only know how to program in C and perhaps some C++.

Many of the math sections are optional and are labeled as such. The mathematics in-

volves simple algebra and basic matrix algebra, and it assumes some familiarity with solu-

tion methods to least-squares optimization problems as well as some basic knowledge of

Gaussian distributions, Bayes’ law, and derivatives of simple functions.

Th e math is in support of developing intuition for the algorithms. Th e reader may skip

the math and the algorithm descriptions, using only the function defi nitions and code

examples to get vision applications up and running.

How This Book Is Best Used
This text need not be read in order. It can serve as a kind of user manual: look up the func-

tion when you need it; read the function’s description if you want the gist of how it works

“under the hood”. The intent of this book is more tutorial, however. It gives you a basic

understanding of computer vision along with details of how and when to use selected

algorithms.

This book was written to allow its use as an adjunct or as a primary textbook for an un-

dergraduate or graduate course in computer vision. The basic strategy with this method is

for students to read the book for a rapid overview and then supplement that reading with

more formal sections in other textbooks and with papers in the field. There are exercises

at the end of each chapter to help test the student’s knowledge and to develop further

intuitions.

You could approach this text in any of the following ways.

FM-R4886-AT1.indd xiFM-R4886-AT1.indd xi 9/15/08 4:26:41 PM9/15/08 4:26:41 PM

xii | Preface

Grab Bag

Go through Chapters 1–3 in the first sitting, then just hit the appropriate chapters or

sections as you need them. This book does not have to be read in sequence, except for

Chapters 11 and 12 (Calibration and Stereo).

Good Progress

Read just two chapters a week until you’ve covered Chapters 1–12 in six weeks (Chap-

ter 13 is a special case, as discussed shortly). Start on projects and start in detail on

selected areas in the field, using additional texts and papers as appropriate.

The Sprint

Just cruise through the book as fast as your comprehension allows, covering Chapters

1–12. Then get started on projects and go into detail on selected areas in the field us-

ing additional texts and papers. This is probably the choice for professionals, but it

might also suit a more advanced computer vision course.

Chapter 13 is a long chapter that gives a general background to machine learning in addi-

tion to details behind the machine learning algorithms implemented in OpenCV and how

to use them. Of course, machine learning is integral to object recognition and a big part

of computer vision, but it’s a field worthy of its own book. Professionals should find this

text a suitable launching point for further explorations of the literature—or for just getting

down to business with the code in that part of the library. This chapter should probably be

considered optional for a typical computer vision class.

Th is is how the authors like to teach computer vision: Sprint through the course content

at a level where the students get the gist of how things work; then get students started

on meaningful class projects while the instructor supplies depth and formal rigor in

selected areas by drawing from other texts or papers in the fi eld. Th is same method

works for quarter, semester, or two-term classes. Students can get quickly up and run-

ning with a general understanding of their vision task and working code to match. As

they begin more challenging and time-consuming projects, the instructor helps them

develop and debug complex systems. For longer courses, the projects themselves can

become instructional in terms of project management. Build up working systems fi rst;

refi ne them with more knowledge, detail, and research later. Th e goal in such courses is

for each project to aim at being worthy of a conference publication and with a few proj-

ect papers being published subsequent to further (postcourse) work.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic

Indicates new terms, URLs, email addresses, filenames, file extensions, path names,

directories, and Unix utilities.

Constant width
Indicates commands, options, switches, variables, attributes, keys, functions, types,

classes, namespaces, methods, modules, properties, parameters, values, objects,

FM-R4886-AT1.indd xiiFM-R4886-AT1.indd xii 9/15/08 4:26:41 PM9/15/08 4:26:41 PM

Preface | xiii

events, event handlers, XMLtags, HTMLtags, the contents of files, or the output from

commands.

Constant width bold
Shows commands or other text that should be typed literally by the user. Also used

for emphasis in code samples.

Constant width italic
Shows text that should be replaced with user-supplied values.

[. . .]

Indicates a reference to the bibliography.

Shows text that should be replaced with user-supplied values. his icon
signifi es a tip, suggestion, or general note.

Th is icon indicates a warning or caution.

Using Code Examples
OpenCV is free for commercial or research use, and we have the same policy on the

code examples in the book. Use them at will for homework, for research, or for commer-

cial products. We would very much appreciate referencing this book when you do, but

it is not required. Other than how it helped with your homework projects (which is best

kept a secret), we would like to hear how you are using computer vision for academic re-

search, teaching courses, and in commercial products when you do use OpenCV to help

you. Again, not required, but you are always invited to drop us a line.

Safari® Books Online
When you see a Safari® Books Online icon on the cover of your favor-

ite technology book, that means the book is available online through the

O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s virtual library that lets you easily

search thousands of top tech books, cut and paste code samples, download chapters, and

find quick answers when you need the most accurate, current information. Try it for free

at http://safari.oreilly.com.

We’d Like to Hear from You
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

FM-R4886-AT1.indd xiiiFM-R4886-AT1.indd xiii 9/15/08 4:26:41 PM9/15/08 4:26:41 PM

xiv | Preface

800-998-9938 (in the United States or Canada)

707-829-0515 (international or local)

707-829-0104 (fax)

We have a web page for this book, where we list examples and any plans for future edi-

tions. You can access this information at:

http://www.oreilly.com/catalog/9780596516130/

You can also send messages electronically. To be put on the mailing list or request a cata-

log, send an email to:

info@oreilly.com

To comment on the book, send an email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the O’Reilly

Network, see our website at:

http://www.oreilly.com

Acknowledgments
A long-term open source eff ort sees many people come and go, each contributing in dif-

ferent ways. Th e list of contributors to this library is far too long to list here, but see the

.../opencv/docs/HTML/Contributors/doc_contributors.html fi le that ships with OpenCV.

Thanks for Help on OpenCV
Intel is where the library was born and deserves great thanks for supporting this project

the whole way through. Open source needs a champion and enough development sup-

port in the beginning to achieve critical mass. Intel gave it both. There are not many other

companies where one could have started and maintained such a project through good

times and bad. Along the way, OpenCV helped give rise to—and now takes (optional)

advantage of—Intel’s Integrated Performance Primitives, which are hand-tuned assembly

language routines in vision, signal processing, speech, linear algebra, and more. Thus the

lives of a great commercial product and an open source product are intertwined.

Mark Holler, a research manager at Intel, allowed OpenCV to get started by knowingly

turning a blind eye to the inordinate amount of time being spent on an unofficial project

back in the library’s earliest days. As divine reward, he now grows wine up in Napa’s Mt.

Vieder area. Stuart Taylor in the Performance Libraries group at Intel enabled OpenCV

by letting us “borrow” part of his Russian software team. Richard Wirt was key to its

continued growth and survival. As the first author took on management responsibility

at Intel, lab director Bob Liang let OpenCV thrive; when Justin Rattner became CTO,

we were able to put OpenCV on a more firm foundation under Software Technology

Lab—supported by software guru Shinn-Horng Lee and indirectly under his manager,

Paul Wiley. Omid Moghadam helped advertise OpenCV in the early days. Mohammad

Haghighat and Bill Butera were great as technical sounding boards. Nuriel Amir, Denver

FM-R4886-AT1.indd xivFM-R4886-AT1.indd xiv 9/15/08 4:26:42 PM9/15/08 4:26:42 PM

Preface | xv

Dash, John Mark Agosta, and Marzia Polito were of key assistance in launching the ma-

chine learning library. Rainer Lienhart, Jean-Yves Bouguet, Radek Grzeszczuk, and Ara

Nefian were able technical contributors to OpenCV and great colleagues along the way;

the first is now a professor, the second is now making use of OpenCV in some well-known

Google projects, and the others are staffing research labs and start-ups. There were many

other technical contributors too numerous to name.

On the software side, some individuals stand out for special mention, especially on the

Russian software team. Chief among these is the Russian lead programmer Vadim Pisare-

vsky, who developed large parts of the library and also managed and nurtured the library

through the lean times when boom had turned to bust; he, if anyone, is the true hero of the

library. His technical insights have also been of great help during the writing of this book.

Giving him managerial support and protection in the lean years was Valery Kuriakin, a

man of great talent and intellect. Victor Eruhimov was there in the beginning and stayed

through most of it. We thank Boris Chudinovich for all of the contour components.

Finally, very special thanks go to Willow Garage [WG], not only for its steady fi nancial

backing to OpenCV’s future development but also for supporting one author (and pro-

viding the other with snacks and beverages) during the fi nal period of writing this book.

Thanks for Help on the Book
While preparing this book, we had several key people contributing advice, reviews, and

suggestions. Thanks to John Markoff, Technology Reporter at the New York Times for

encouragement, key contacts, and general writing advice born of years in the trenches.

To our reviewers, a special thanks go to Evgeniy Bart, physics postdoc at CalTech, who

made many helpful comments on every chapter; Kjerstin Williams at Applied Minds,

who did detailed proofs and verification until the end; John Hsu at Willow Garage, who

went through all the example code; and Vadim Pisarevsky, who read each chapter in de-

tail, proofed the function calls and the code, and also provided several coding examples.

There were many other partial reviewers. Jean-Yves Bouguet at Google was of great help

in discussions on the calibration and stereo chapters. Professor Andrew Ng at Stanford

University provided useful early critiques of the machine learning chapter. There were

numerous other reviewers for various chapters—our thanks to all of them. Of course,

any errors result from our own ignorance or misunderstanding, not from the advice we

received.

Finally, many thanks go to our editor, Michael Loukides, for his early support, numer-

ous edits, and continued enthusiasm over the long haul.

Gary Adds . . .
With three young kids at home, my wife Sonya put in more work to enable this book than

I did. Deep thanks and love—even OpenCV gives her recognition, as you can see in the

face detection section example image. Further back, my technical beginnings started with

the physics department at the University of Oregon followed by undergraduate years at

FM-R4886-AT1.indd xvFM-R4886-AT1.indd xv 9/15/08 4:26:42 PM9/15/08 4:26:42 PM

xvi | Preface

UC Berkeley. For graduate school, I’d like to thank my advisor Steve Grossberg and Gail

Carpenter at the Center for Adaptive Systems, Boston University, where I first cut my

academic teeth. Though they focus on mathematical modeling of the brain and I have

ended up firmly on the engineering side of AI, I think the perspectives I developed there

have made all the difference. Some of my former colleagues in graduate school are still

close friends and gave advice, support, and even some editing of the book: thanks to

Frank Guenther, Andrew Worth, Steve Lehar, Dan Cruthirds, Allen Gove, and Krishna

Govindarajan.

I specially thank Stanford University, where I’m currently a consulting professor in the

AI and Robotics lab. Having close contact with the best minds in the world definitely

rubs off, and working with Sebastian Thrun and Mike Montemerlo to apply OpenCV

on Stanley (the robot that won the $2M DARPA Grand Challenge) and with Andrew Ng

on STAIR (one of the most advanced personal robots) was more technological fun than

a person has a right to have. It’s a department that is currently hitting on all cylinders

and simply a great environment to be in. In addition to Sebastian Thrun and Andrew Ng

there, I thank Daphne Koller for setting high scientific standards, and also for letting me

hire away some key interns and students, as well as Kunle Olukotun and Christos Kozy-

rakis for many discussions and joint work. I also thank Oussama Khatib, whose work on

control and manipulation has inspired my current interests in visually guided robotic

manipulation. Horst Haussecker at Intel Research was a great colleague to have, and his

own experience in writing a book helped inspire my effort.

Finally, thanks once again to Willow Garage for allowing me to pursue my lifelong ro-

botic dreams in a great environment featuring world-class talent while also supporting

my time on this book and supporting OpenCV itself.

Adrian Adds . . .
Coming from a background in theoretical physics, the arc that brought me through su-

percomputer design and numerical computing on to machine learning and computer vi-

sion has been a long one. Along the way, many individuals stand out as key contributors. I

have had many wonderful teachers, some formal instructors and others informal guides.

I should single out Professor David Dorfan of UC Santa Cruz and Hartmut Sadrozinski of

SLAC for their encouragement in the beginning, and Norman Christ for teaching me the

fine art of computing with the simple edict that “if you can not make the computer do it,

you don’t know what you are talking about”. Special thanks go to James Guzzo, who let me

spend time on this sort of thing at Intel—even though it was miles from what I was sup-

posed to be doing—and who encouraged my participation in the Grand Challenge during

those years. Finally, I want to thank Danny Hillis for creating the kind of place where all of

this technology can make the leap to wizardry and for encouraging my work on the book

while at Applied Minds.

I also would like to thank Stanford University for the extraordinary amount of support I

have received from them over the years. From my work on the Grand Challenge team with

Sebastian Thrun to the STAIR Robot with Andrew Ng, the Stanford AI Lab was always

FM-R4886-AT1.indd xviFM-R4886-AT1.indd xvi 9/15/08 4:26:42 PM9/15/08 4:26:42 PM

Preface | xvii

generous with office space, financial support, and most importantly ideas, enlightening

conversation, and (when needed) simple instruction on so many aspects of vision, robot-

ics, and machine learning. I have a deep gratitude to these people, who have contributed

so significantly to my own growth and learning.

No acknowledgment or thanks would be meaningful without a special thanks to my lady

Lyssa, who never once faltered in her encouragement of this project or in her willingness

to accompany me on trips up and down the state to work with Gary on this book. My

thanks and my love go to her.

FM-R4886-AT1.indd xviiFM-R4886-AT1.indd xvii 9/15/08 4:26:43 PM9/15/08 4:26:43 PM

i

FM-R4886-AT1.indd xviiiFM-R4886-AT1.indd xviii 9/15/08 4:26:43 PM9/15/08 4:26:43 PM

1

CHAPTER 1

Overview

What Is OpenCV?
OpenCV [OpenCV] is an open source (see http://opensource.org) computer vision library

available from http://SourceForge.net/projects/opencvlibrary. Th e library is written in C

and C++ and runs under Linux, Windows and Mac OS X. Th ere is active development

on interfaces for Python, Ruby, Matlab, and other languages.

OpenCV was designed for computational effi ciency and with a strong focus on real-

time applications. OpenCV is written in optimized C and can take advantage of mul-

ticore processors. If you desire further automatic optimization on Intel architectures

[Intel], you can buy Intel’s Integrated Performance Primitives (IPP) libraries [IPP], which

consist of low-level optimized routines in many diff erent algorithmic areas. OpenCV

automatically uses the appropriate IPP library at runtime if that library is installed.

One of OpenCV’s goals is to provide a simple-to-use computer vision infrastructure

that helps people build fairly sophisticated vision applications quickly. Th e OpenCV

library contains over 500 functions that span many areas in vision, including factory

product inspection, medical imaging, security, user interface, camera calibration, stereo

vision, and robotics. Because computer vision and machine learning oft en go hand-in-

hand, OpenCV also contains a full, general-purpose Machine Learning Library (MLL).

Th is sublibrary is focused on statistical pattern recognition and clustering. Th e MLL is

highly useful for the vision tasks that are at the core of OpenCV’s mission, but it is gen-

eral enough to be used for any machine learning problem.

Who Uses OpenCV?
Most computer scientists and practical programmers are aware of some facet of the role

that computer vision plays. But few people are aware of all the ways in which computer

vision is used. For example, most people are somewhat aware of its use in surveillance,

and many also know that it is increasingly being used for images and video on the Web.

A few have seen some use of computer vision in game interfaces. Yet few people realize

that most aerial and street-map images (such as in Google’s Street View) make heavy

01-R4886-RC1.indd 101-R4886-RC1.indd 1 9/15/08 4:17:45 PM9/15/08 4:17:45 PM

2 | Chapter 1: Overview

use of camera calibration and image stitching techniques. Some are aware of niche ap-

plications in safety monitoring, unmanned fl ying vehicles, or biomedical analysis. But

few are aware how pervasive machine vision has become in manufacturing: virtually

everything that is mass-produced has been automatically inspected at some point using

computer vision.

Th e open source license for OpenCV has been structured such that you can build a

commercial product using all or part of OpenCV. You are under no obligation to open-

source your product or to return improvements to the public domain, though we hope

you will. In part because of these liberal licensing terms, there is a large user commu-

nity that includes people from major companies (IBM, Microsoft , Intel, SONY, Siemens,

and Google, to name only a few) and research centers (such as Stanford, MIT, CMU,

Cambridge, and INRIA). Th ere is a Yahoo groups forum where users can post questions

and discussion at http://groups.yahoo.com/group/OpenCV; it has about 20,000 members.

OpenCV is popular around the world, with large user communities in China, Japan,

Russia, Europe, and Israel.

Since its alpha release in January 1999, OpenCV has been used in many applications,

products, and research eff orts. Th ese applications include stitching images together in

satellite and web maps, image scan alignment, medical image noise reduction, object

analysis, security and intrusion detection systems, automatic monitoring and safety sys-

tems, manufacturing inspection systems, camera calibration, military applications, and

unmanned aerial, ground, and underwater vehicles. It has even been used in sound and

music recognition, where vision recognition techniques are applied to sound spectro-

gram images. OpenCV was a key part of the vision system in the robot from Stanford,

“Stanley”, which won the $2M DARPA Grand Challenge desert robot race [Th run06].

What Is Computer Vision?
Computer vision* is the transformation of data from a still or video camera into either a

decision or a new representation. All such transformations are done for achieving some

particular goal. Th e input data may include some contextual information such as “the

camera is mounted in a car” or “laser range fi nder indicates an object is 1 meter away”.

Th e decision might be “there is a person in this scene” or “there are 14 tumor cells on

this slide”. A new representation might mean turning a color image into a grayscale im-

age or removing camera motion from an image sequence.

Because we are such visual creatures, it is easy to be fooled into thinking that com-

puter vision tasks are easy. How hard can it be to fi nd, say, a car when you are staring

at it in an image? Your initial intuitions can be quite misleading. Th e human brain di-

vides the vision signal into many channels that stream diff erent kinds of information

into your brain. Your brain has an attention system that identifi es, in a task-dependent

* Computer vision is a vast fi eld. Th is book will give you a basic grounding in the fi eld, but we also recom-
mend texts by Trucco [Trucco98] for a simple introduction, Forsyth [Forsyth03] as a comprehensive refer-
ence, and Hartley [Hartley06] and Faugeras [Faugeras93] for how 3D vision really works.

01-R4886-RC1.indd 201-R4886-RC1.indd 2 9/15/08 4:17:45 PM9/15/08 4:17:45 PM

What Is Computer Vision? | 3

way, important parts of an image to examine while suppressing examination of other

areas. Th ere is massive feedback in the visual stream that is, as yet, little understood.

Th ere are widespread associative inputs from muscle control sensors and all of the other

senses that allow the brain to draw on cross-associations made from years of living in

the world. Th e feedback loops in the brain go back to all stages of processing including

the hardware sensors themselves (the eyes), which mechanically control lighting via the

iris and tune the reception on the surface of the retina.

In a machine vision system, however, a computer receives a grid of numbers from the

camera or from disk, and that’s it. For the most part, there’s no built-in pattern recog-

nition, no automatic control of focus and aperture, no cross-associations with years of

experience. For the most part, vision systems are still fairly naïve. Figure 1-1 shows a

picture of an automobile. In that picture we see a side mirror on the driver’s side of the

car. What the computer “sees” is just a grid of numbers. Any given number within that

grid has a rather large noise component and so by itself gives us little information, but

this grid of numbers is all the computer “sees”. Our task then becomes to turn this noisy

grid of numbers into the perception: “side mirror”. Figure 1-2 gives some more insight

into why computer vision is so hard.

Figure 1-1. To a computer, the car’s side mirror is just a grid of numbers

In fact, the problem, as we have posed it thus far, is worse than hard; it is formally im-

possible to solve. Given a two-dimensional (2D) view of a 3D world, there is no unique

way to reconstruct the 3D signal. Formally, such an ill-posed problem has no unique or

defi nitive solution. Th e same 2D image could represent any of an infi nite combination

of 3D scenes, even if the data were perfect. However, as already mentioned, the data is

01-R4886-RC1.indd 301-R4886-RC1.indd 3 9/15/08 4:17:46 PM9/15/08 4:17:46 PM

4 | Chapter 1: Overview

corrupted by noise and distortions. Such corruption stems from variations in the world

(weather, lighting, refl ections, movements), imperfections in the lens and mechanical

setup, fi nite integration time on the sensor (motion blur), electrical noise in the sensor

or other electronics, and compression artifacts aft er image capture. Given these daunt-

ing challenges, how can we make any progress?

In the design of a practical system, additional contextual knowledge can oft en be used

to work around the limitations imposed on us by visual sensors. Consider the example

of a mobile robot that must fi nd and pick up staplers in a building. Th e robot might use

the facts that a desk is an object found inside offi ces and that staplers are mostly found

on desks. Th is gives an implicit size reference; staplers must be able to fi t on desks. It

also helps to eliminate falsely “recognizing” staplers in impossible places (e.g., on the

ceiling or a window). Th e robot can safely ignore a 200-foot advertising blimp shaped

like a stapler because the blimp lacks the prerequisite wood-grained background of a

desk. In contrast, with tasks such as image retrieval, all stapler images in a database

Figure 1-2. Th e ill-posed nature of vision: the 2D appearance of objects can change radically with
viewpoint

01-R4886-RC1.indd 401-R4886-RC1.indd 4 9/15/08 4:17:46 PM9/15/08 4:17:46 PM

What Is Computer Vision? | 5

may be of real staplers and so large sizes and other unusual confi gurations may have

been implicitly precluded by the assumptions of those who took the photographs.

Th at is, the photographer probably took pictures only of real, normal-sized staplers.

People also tend to center objects when taking pictures and tend to put them in char-

acteristic orientations. Th us, there is oft en quite a bit of unintentional implicit informa-

tion within photos taken by people.

Contextual information can also be modeled explicitly with machine learning tech-

niques. Hidden variables such as size, orientation to gravity, and so on can then be

correlated with their values in a labeled training set. Alternatively, one may attempt

to measure hidden bias variables by using additional sensors. Th e use of a laser range

fi nder to measure depth allows us to accurately measure the size of an object.

Th e next problem facing computer vision is noise. We typically deal with noise by us-

ing statistical methods. For example, it may be impossible to detect an edge in an image

merely by comparing a point to its immediate neighbors. But if we look at the statistics

over a local region, edge detection becomes much easier. A real edge should appear as a

string of such immediate neighbor responses over a local region, each of whose orienta-

tion is consistent with its neighbors. It is also possible to compensate for noise by taking

statistics over time. Still other techniques account for noise or distortions by building ex-

plicit models learned directly from the available data. For example, because lens distor-

tions are well understood, one need only learn the parameters for a simple polynomial

model in order to describe—and thus correct almost completely—such distortions.

Th e actions or decisions that computer vision attempts to make based on camera data

are performed in the context of a specifi c purpose or task. We may want to remove noise

or damage from an image so that our security system will issue an alert if someone tries

to climb a fence or because we need a monitoring system that counts how many people

cross through an area in an amusement park. Vision soft ware for robots that wander

through offi ce buildings will employ diff erent strategies than vision soft ware for sta-

tionary security cameras because the two systems have signifi cantly diff erent contexts

and objectives. As a general rule: the more constrained a computer vision context is, the

more we can rely on those constraints to simplify the problem and the more reliable our

fi nal solution will be.

OpenCV is aimed at providing the basic tools needed to solve computer vision prob-

lems. In some cases, high-level functionalities in the library will be suffi cient to solve

the more complex problems in computer vision. Even when this is not the case, the basic

components in the library are complete enough to enable creation of a complete solu-

tion of your own to almost any computer vision problem. In the latter case, there are

several tried-and-true methods of using the library; all of them start with solving the

problem using as many available library components as possible. Typically, aft er you’ve

developed this fi rst-draft solution, you can see where the solution has weaknesses and

then fi x those weaknesses using your own code and cleverness (better known as “solve

the problem you actually have, not the one you imagine”). You can then use your draft

01-R4886-RC1.indd 501-R4886-RC1.indd 5 9/15/08 4:17:46 PM9/15/08 4:17:46 PM

6 | Chapter 1: Overview

solution as a benchmark to assess the improvements you have made. From that point,

whatever weaknesses remain can be tackled by exploiting the context of the larger sys-

tem in which your problem solution is embedded.

The Origin of OpenCV
OpenCV grew out of an Intel Research initiative to advance CPU-intensive applications.

Toward this end, Intel launched many projects including real-time ray tracing and 3D

display walls. One of the authors working for Intel at that time was visiting universities

and noticed that some top university groups, such as the MIT Media Lab, had well-

developed and internally open computer vision infrastructures—code that was passed

from student to student and that gave each new student a valuable head start in develop-

ing his or her own vision application. Instead of reinventing the basic functions from

scratch, a new student could begin by building on top of what came before.

Th us, OpenCV was conceived as a way to make computer vision infrastructure uni-

versally available. With the aid of Intel’s Performance Library Team,* OpenCV started

with a core of implemented code and algorithmic specifi cations being sent to members

of Intel’s Russian library team. Th is is the “where” of OpenCV: it started in Intel’s re-

search lab with collaboration from the Soft ware Performance Libraries group together

with implementation and optimization expertise in Russia.

Chief among the Russian team members was Vadim Pisarevsky, who managed, coded,

and optimized much of OpenCV and who is still at the center of much of the OpenCV

eff ort. Along with him, Victor Eruhimov helped develop the early infrastructure, and

Valery Kuriakin managed the Russian lab and greatly supported the eff ort. Th ere were

several goals for OpenCV at the outset:

Advance vision research by providing not only open but also optimized code for •

basic vision infrastructure. No more reinventing the wheel.

Disseminate vision knowledge by providing a common infrastructure that develop-•

ers could build on, so that code would be more readily readable and transferable.

Advance vision-based commercial applications by making portable, performance-•

optimized code available for free—with a license that did not require commercial

applications to be open or free themselves.

Th ose goals constitute the “why” of OpenCV. Enabling computer vision applications

would increase the need for fast processors. Driving upgrades to faster processors would

generate more income for Intel than selling some extra soft ware. Perhaps that is why this

open and free code arose from a hardware vendor rather than a soft ware company. In

some sense, there is more room to be innovative at soft ware within a hardware company.

In any open source eff ort, it’s important to reach a critical mass at which the project

becomes self-sustaining. Th ere have now been approximately two million downloads

* Shinn Lee was of key help.

01-R4886-RC1.indd 601-R4886-RC1.indd 6 9/15/08 4:17:47 PM9/15/08 4:17:47 PM

The Origin of OpenCV | 7

of OpenCV, and this number is growing by an average of 26,000 downloads a month.

Th e user group now approaches 20,000 members. OpenCV receives many user contri-

butions, and central development has largely moved outside of Intel.* OpenCV’s past

timeline is shown in Figure 1-3. Along the way, OpenCV was aff ected by the dot-com

boom and bust and also by numerous changes of management and direction. During

these fl uctuations, there were times when OpenCV had no one at Intel working on it at

all. However, with the advent of multicore processors and the many new applications

of computer vision, OpenCV’s value began to rise. Today, OpenCV is an active area

of development at several institutions, so expect to see many updates in multicamera

calibration, depth perception, methods for mixing vision with laser range fi nders, and

better pattern recognition as well as a lot of support for robotic vision needs. For more

information on the future of OpenCV, see Chapter 14.

Speeding Up OpenCV with IPP
Because OpenCV was “housed” within the Intel Performance Primitives team and sev-

eral primary developers remain on friendly terms with that team, OpenCV exploits the

hand-tuned, highly optimized code in IPP to speed itself up. Th e improvement in speed

from using IPP can be substantial. Figure 1-4 compares two other vision libraries, LTI

[LTI] and VXL [VXL], against OpenCV and OpenCV using IPP. Note that performance

was a key goal of OpenCV; the library needed the ability to run vision code in real time.

OpenCV is written in performance-optimized C and C++ code. It does not depend in

any way on IPP. If IPP is present, however, OpenCV will automatically take advantage

of IPP by loading IPP’s dynamic link libraries to further enhance its speed.

* As of this writing, Willow Garage [WG] (www.willowgarage.com), a robotics research institute and
incubator, is actively supporting general OpenCV maintenance and new development in the area of
robotics applications.

Figure 1-3. OpenCV timeline

01-R4886-RC1.indd 701-R4886-RC1.indd 7 9/15/08 4:17:47 PM9/15/08 4:17:47 PM

8 | Chapter 1: Overview

Who Owns OpenCV?
Although Intel started OpenCV, the library is and always was intended to promote

commercial and research use. It is therefore open and free, and the code itself may be

used or embedded (in whole or in part) in other applications, whether commercial or

research. It does not force your application code to be open or free. It does not require

that you return improvements back to the library—but we hope that you will.

Downloading and Installing OpenCV
Th e main OpenCV site is on SourceForge at http://SourceForge.net/projects/opencvlibrary

and the OpenCV Wiki [OpenCV Wiki] page is at http://opencvlibrary.SourceForge.net.

For Linux, the source distribution is the fi le opencv-1.0.0.tar.gz; for Windows, you want

OpenCV_1.0.exe. However, the most up-to-date version is always on the CVS server at

SourceForge.

Install
Once you download the libraries, you must install them. For detailed installation in-

structions on Linux or Mac OS, see the text fi le named INSTALL directly under the

Figure 1-4. Two other vision libraries (LTI and VXL) compared with OpenCV (without and with
IPP) on four diff erent performance benchmarks: the four bars for each benchmark indicate scores
proportional to run time for each of the given libraries; in all cases, OpenCV outperforms the other
libraries and OpenCV with IPP outperforms OpenCV without IPP

01-R4886-RC1.indd 801-R4886-RC1.indd 8 9/15/08 4:17:47 PM9/15/08 4:17:47 PM

Downloading and Installing OpenCV | 9

.../opencv/ directory; this fi le also describes how to build and run the OpenCV test-

ing routines. INSTALL lists the additional programs you’ll need in order to become an

OpenCV developer, such as autoconf, automake, libtool, and swig.

Windows

Get the executable installation from SourceForge and run it. It will install OpenCV, reg-

ister DirectShow fi lters, and perform various post-installation procedures. You are now

ready to start using OpenCV. You can always go to the .../opencv/_make directory and open

opencv.sln with MSVC++ or MSVC.NET 2005, or you can open opencv.dsw with lower ver -

sions of MSVC++ and build debug versions or rebuild release versions of the library.*

To add the commercial IPP performance optimizations to Windows, obtain and in-

stall IPP from the Intel site (http://www.intel.com/soft ware/products/ipp/index.htm);

use version 5.1 or later. Make sure the appropriate binary folder (e.g., c:/program fi les/

intel/ipp/5.1/ia32/bin) is in the system path. IPP should now be automatically detected

by OpenCV and loaded at runtime (more on this in Chapter 3).

Linux

Prebuilt binaries for Linux are not included with the Linux version of OpenCV owing

to the large variety of versions of GCC and GLIBC in diff erent distributions (SuSE,

Debian, Ubuntu, etc.). If your distribution doesn’t off er OpenCV, you’ll have to build it

from sources as detailed in the .../opencv/INSTALL fi le.

To build the libraries and demos, you’ll need GTK+ 2.x or higher, including headers.

You’ll also need pkgconfi g, libpng, zlib, libjpeg, libtiff , and libjasper with development

fi les. You’ll need Python 2.3, 2.4, or 2.5 with headers installed (developer package).

You will also need libavcodec and the other libav* libraries (including headers) from

ff mpeg 0.4.9-pre1 or later (svn checkout svn://svn.mplayerhq.hu/ff mpeg/trunk ff mpeg).

Download ff mpeg from http://ff mpeg.mplayerhq.hu/download.html.† Th e ff mpeg pro-

gram has a lesser general public license (LGPL). To use it with non-GPL soft ware (such

as OpenCV), build and use a shared ff mpg library:

$> ./configure --enable-shared
$> make
$> sudo make install

You will end up with: /usr/local/lib/libavcodec.so.*, /usr/local/lib/libavformat.so.*,

/usr/local/lib/libavutil.so.*, and include fi les under various /usr/local/include/libav*.

To build OpenCV once it is downloaded:‡

* It is important to know that, although the Windows distribution contains binary libraries for release builds,
it does not contain the debug builds of these libraries. It is therefore likely that, before developing with
OpenCV, you will want to open the solution fi le and build these libraries for yourself.

† You can check out ff mpeg by: svn checkout svn://svn.mplayerhq.hu/ff mpeg/trunk ff mpeg.

‡ To build OpenCV using Red Hat Package Managers (RPMs), use rpmbuild -ta OpenCV-x.y.z.tar.gz (for
RPM 4.x or later), or rpm -ta OpenCV-x.y.z.tar.gz (for earlier versions of RPM), where OpenCV-x.y.z.tar
.gz should be put in /usr/src/redhat/SOURCES/ or a similar directory. Th en install OpenCV using rpm -i
OpenCV-x.y.z.*.rpm.

01-R4886-RC1.indd 901-R4886-RC1.indd 9 9/15/08 4:17:47 PM9/15/08 4:17:47 PM

10 | Chapter 1: Overview

$> ./configure
$> make
$> sudo make install
$> sudo ldconfig

Aft er installation is complete, the default installation path is /usr/local/lib/ and /usr/

local/include/opencv/. Hence you need to add /usr/local/lib/ to /etc/ld.so.conf (and run

ldconfig aft erwards) or add it to the LD_LIBRARY_PATH environment variable; then you

are done.

To add the commercial IPP performance optimizations to Linux, install IPP as de-

scribed previously. Let’s assume it was installed in /opt/intel/ipp/5.1/ia32/. Add <your

install_path>/bin/ and <your install_path>/bin/linux32 LD_LIBRARY_PATH in your initial-

ization script (.bashrc or similar):

LD_LIBRARY_PATH=/opt/intel/ipp/5.1/ia32/bin:/opt/intel/ipp/5.1
/ia32/bin/linux32:$LD_LIBRARY_PATH
export LD_LIBRARY_PATH

Alternatively, you can add <your install_path>/bin and <your install_path>/bin/linux32,

one per line, to /etc/ld.so.conf and then run ldconfi g as root (or use sudo).

Th at’s it. Now OpenCV should be able to locate IPP shared libraries and make use of

them on Linux. See .../opencv/INSTALL for more details.

MacOS X

As of this writing, full functionality on MacOS X is a priority but there are still some

limitations (e.g., writing AVIs); these limitations are described in .../opencv/INSTALL.

Th e requirements and building instructions are similar to the Linux case, with the fol-

lowing exceptions:

By default, Carbon is used instead of GTK+.•

By default, QuickTime is used instead of ff mpeg.•

pkg-confi g is optional (it is used explicitly only in the • samples/c/build_all.sh script).

RPM and ldconfi g are not supported by default. Use • configure+make+sudo make
install to build and install OpenCV, update LD_LIBRARY_PATH (unless ./configure
--prefix=/usr is used).

For full functionality, you should install libpng, libtiff , libjpeg and libjasper from

darwinports and/or fi nk and make them available to ./confi gure (see ./configure
--help). For the most current information, see the OpenCV Wiki at http://opencvlibrary

.SourceForge.net/ and the Mac-specifi c page http://opencvlibrary.SourceForge.net/

Mac_OS_X_OpenCV_Port.

Getting the Latest OpenCV via CVS
OpenCV is under active development, and bugs are oft en fi xed rapidly when bug re-

ports contain accurate descriptions and code that demonstrates the bug. However,

01-R4886-RC1.indd 1001-R4886-RC1.indd 10 9/15/08 4:17:48 PM9/15/08 4:17:48 PM

More OpenCV Documentation | 11

offi cial OpenCV releases occur only once or twice a year. If you are seriously develop-

ing a project or product, you will probably want code fi xes and updates as soon as they

become available. To do this, you will need to access OpenCV’s Concurrent Versions

System (CVS) on SourceForge.

Th is isn’t the place for a tutorial in CVS usage. If you’ve worked with other open source

projects then you’re probably familiar with it already. If you haven’t, check out Essential

CVS by Jennifer Vesperman (O’Reilly). A command-line CVS client ships with Linux,

OS X, and most UNIX-like systems. For Windows users, we recommend TortoiseCVS

(http://www.tortoisecvs.org/), which integrates nicely with Windows Explorer.

On Windows, if you want the latest OpenCV from the CVS repository then you’ll need

to access the CVSROOT directory:

:pserver:anonymous@opencvlibrary.cvs.sourceforge.net:2401/cvsroot/opencvlibrary

On Linux, you can just use the following two commands:

cvs -d:pserver:anonymous@opencvlibrary.cvs.sourceforge.net:/cvsroot/opencvlibrary
login

When asked for password, hit return. Th en use:

cvs -z3 -d:pserver:anonymous@opencvlibrary.cvs.sourceforge.net:/cvsroot/opencvlibrary
co -P opencv

More OpenCV Documentation
Th e primary documentation for OpenCV is the HTML documentation that ships with

the source code. In addition to this, the OpenCV Wiki and the older HTML documen-

tation are available on the Web.

Documentation Available in HTML
OpenCV ships with html-based user documentation in the .../opencv/docs subdirectory.

Load the index.htm fi le, which contains the following links.

CXCORE

Contains data structures, matrix algebra, data transforms, object persistence, mem-

ory management, error handling, and dynamic loading of code as well as drawing,

text and basic math.

CV

Contains image processing, image structure analysis, motion and tracking, pattern

recognition, and camera calibration.

Machine Learning (ML)

Contains many clustering, classifi cation and data analysis functions.

HighGUI

Contains user interface GUI and image/video storage and recall.

01-R4886-RC1.indd 1101-R4886-RC1.indd 11 9/15/08 4:17:48 PM9/15/08 4:17:48 PM

12 | Chapter 1: Overview

CVCAM

Camera interface.

Haartraining

How to train the boosted cascade object detector. Th is is in the .../opencv/apps/

HaarTraining/doc/haartraining.htm fi le.

Th e .../opencv/docs directory also contains IPLMAN.pdf, which was the original manual

for OpenCV. It is now defunct and should be used with caution, but it does include de-

tailed descriptions of algorithms and of what image types may be used with a particular

algorithm. Of course, the fi rst stop for such image and algorithm details is the book you

are reading now.

Documentation via the Wiki
OpenCV’s documentation Wiki is more up-to-date than the html pages that ship with

OpenCV and it also features additional content as well. Th e Wiki is located at http://

opencvlibrary.SourceForge.net. It includes information on:

Instructions on compiling OpenCV using Eclipse IDE•

Face recognition with OpenCV•

Video surveillance library•

Tutorials•

Camera compatibility•

Links to the Chinese and the Korean user groups•

Another Wiki, located at http://opencvlibrary.SourceForge.net/CvAux, is the only doc-

umentation of the auxiliary functions discussed in “OpenCV Structure and Content”

(next section). CvAux includes the following functional areas:

Stereo correspondence•

View point morphing of cameras•

3D tracking in stereo•

Eigen object (PCA) functions for object recognition•

Embedded hidden Markov models (HMMs)•

Th is Wiki has been translated into Chinese at http://www.opencv.org.cn/index.php/

%E9%A6%96%E9%A1%B5.

Regardless of your documentation source, it is oft en hard to know:

Which image type (fl oating, integer, byte; 1–3 channels) works with which •

function

Which functions work in place•

Details of how to call the more complex functions (e.g., contours)•

01-R4886-RC1.indd 1201-R4886-RC1.indd 12 9/15/08 4:17:48 PM9/15/08 4:17:48 PM

OpenCV Structure and Content | 13

Figure 1-5 does not include CvAux, which contains both defunct areas (embedded HMM

face recognition) and experimental algorithms (background/foreground segmentation).

CvAux is not particularly well documented in the Wiki and is not documented at all in

the .../opencv/docs subdirectory. CvAux covers:

Eigen objects, a computationally effi cient recognition technique that is, in essence, a •

template matching procedure

1D and 2D hidden Markov models, a statistical recognition technique solved by •

dynamic programming

Embedded HMMs (the observations of a parent HMM are themselves HMMs)•

Details about running many of the examples in the • …/opencv/samples/c/ directory

What• to do, not just how

How to set parameters of certain functions•

One aim of this book is to address these problems.

OpenCV Structure and Content
OpenCV is broadly structured into fi ve main components, four of which are shown in

Figure 1-5. Th e CV component contains the basic image processing and higher-level

computer vision algorithms; ML is the machine learning library, which includes many

statistical classifi ers and clustering tools. HighGUI contains I/O routines and functions

for storing and loading video and images, and CXCore contains the basic data struc-

tures and content.

Figure 1-5. Th e basic structure of OpenCV

01-R4886-RC1.indd 1301-R4886-RC1.indd 13 9/15/08 4:17:48 PM9/15/08 4:17:48 PM

14 | Chapter 1: Overview

Gesture recognition from stereo vision support•

Extensions to Delaunay triangulation, sequences, and so forth•

Stereo vision•

Shape matching with region contours•

Texture descriptors•

Eye and mouth tracking•

3D tracking•

Finding skeletons (central lines) of objects in a scene•

Warping intermediate views between two camera views•

Background-foreground segmentation•

Video surveillance (see Wiki FAQ for more documentation)•

Camera calibration C++ classes (the C functions and engine are in CV)•

Some of these features may migrate to CV in the future; others probably never will.

Portability
OpenCV was designed to be portable. It was originally written to compile across Bor-

land C++, MSVC++, and the Intel compilers. Th is meant that the C and C++ code had

to be fairly standard in order to make cross-platform support easier. Figure 1-6 shows

the platforms on which OpenCV is known to run. Support for 32-bit Intel architecture

(IA32) on Windows is the most mature, followed by Linux on the same architecture.

Mac OS X portability became a priority only aft er Apple started using Intel processors.

(Th e OS X port isn’t as mature as the Windows or Linux versions, but this is changing

rapidly.) Th ese are followed by 64-bit support on extended memory (EM64T) and the

64-bit Intel architecture (IA64). Th e least mature portability is on Sun hardware and

other operating systems.

If an architecture or OS doesn’t appear in Figure 1-6, this doesn’t mean there are no

OpenCV ports to it. OpenCV has been ported to almost every commercial system, from

PowerPC Macs to robotic dogs. OpenCV runs well on AMD’s line of processors, and

even the further optimizations available in IPP will take advantage of multimedia ex-

tensions (MMX) in AMD processors that incorporate this technology.

01-R4886-RC1.indd 1401-R4886-RC1.indd 14 9/15/08 4:17:48 PM9/15/08 4:17:48 PM

Exercises | 15

Exercises
Download and install the latest release of OpenCV. Compile it in debug and release 1.

mode.

Download and build the latest CVS update of OpenCV.2.

Describe at least three ambiguous aspects of converting 3D inputs into a 2D repre-3.

sentation. How would you overcome these ambiguities?

Figure 1-6. OpenCV portability guide for release 1.0: operating systems are shown on the left ; com-
puter architecture types across top

01-R4886-RC1.indd 1501-R4886-RC1.indd 15 9/15/08 4:17:49 PM9/15/08 4:17:49 PM

16

CHAPTER 2

Introduction to OpenCV

Getting Started
Aft er installing the OpenCV library, our fi rst task is, naturally, to get started and make

something interesting happen. In order to do this, we will need to set up the program-

ming environment.

In Visual Studio, it is necessary to create a project and to confi gure the setup so that

(a) the libraries highgui.lib, cxcore.lib, ml.lib, and cv.lib are linked* and (b) the prepro-

cessor will search the OpenCV …/opencv/*/include directories for header fi les. Th ese

“include” directories will typically be named something like C:/program fi les/opencv/

cv/include,† …/opencv/cxcore/include, …/opencv/ml/include, and …/opencv/otherlibs/

highgui. Once you’ve done this, you can create a new C fi le and start your fi rst program.

Certain key header fi les can make your life much easier. Many useful
macros are in the header fi les …/opencv/cxcore/include/cxtypes.h and
cxmisc.h. Th ese can do things like initialize structures and arrays in one
line, sort lists, and so on. Th e most important headers for compiling are
.../cv/include/cv.h and …/cxcore/include/cxcore.h for computer vision,
…/otherlibs/highgui/highgui.h for I/O, and …/ml/include/ml.h for ma-
chine learning.

First Program—Display a Picture
OpenCV provides utilities for reading from a wide array of image fi le types as well as

from video and cameras. Th ese utilities are part of a toolkit called HighGUI, which is

included in the OpenCV package. We will use some of these utilities to create a simple

program that opens an image and displays it on the screen. See Example 2-1.

* For debug builds, you should link to the libraries highguid.lib, cxcored.lib, mld.lib, and cvd.lib.

† C:/program fi les/ is the default installation of the OpenCV directory on Windows, although you can choose
to install it elsewhere. To avoid confusion, from here on we’ll use “…/opencv/” to mean the path to the
opencv directory on your system.

02-R4886-AT1.indd 1602-R4886-AT1.indd 16 9/15/08 4:18:10 PM9/15/08 4:18:10 PM

First Program—Display a Picture | 17

Example 2-1. A simple OpenCV program that loads an image from disk and displays it on the screen

#include “highgui.h”

int main(int argc, char** argv) {
 IplImage* img = cvLoadImage(argv[1]);
 cvNamedWindow(“Example1”, CV_WINDOW_AUTOSIZE);
 cvShowImage(“Example1”, img);
 cvWaitKey(0);
 cvReleaseImage(&img);
 cvDestroyWindow(“Example1”);

}

When compiled and run from the command line with a single argument, this program

loads an image into memory and displays it on the screen. It then waits until the user

presses a key, at which time it closes the window and exits. Let’s go through the program

line by line and take a moment to understand what each command is doing.

IplImage* img = cvLoadImage(argv[1]);

Th is line loads the image.* Th e function cvLoadImage() is a high-level routine that deter-

mines the fi le format to be loaded based on the fi le name; it also automatically allocates

the memory needed for the image data structure. Note that cvLoadImage() can read a

wide variety of image formats, including BMP, DIB, JPEG, JPE, PNG, PBM, PGM, PPM,

SR, RAS, and TIFF. A pointer to an allocated image data structure is then returned.

Th is structure, called IplImage, is the OpenCV construct with which you will deal

the most. OpenCV uses this structure to handle all kinds of images: single-channel,

multichannel, integer-valued, fl oating-point-valued, et cetera. We use the pointer that

cvLoadImage() returns to manipulate the image and the image data.

cvNamedWindow(“Example1”, CV_WINDOW_AUTOSIZE);

Another high-level function, cvNamedWindow(), opens a window on the screen that can

contain and display an image. Th is function, provided by the HighGUI library, also as-

signs a name to the window (in this case, “Example1”). Future HighGUI calls that inter-

act with this window will refer to it by this name.

Th e second argument to cvNamedWindow() defi nes window properties. It may be set ei-

ther to 0 (the default value) or to CV_WINDOW_AUTOSIZE. In the former case, the size of the

window will be the same regardless of the image size, and the image will be scaled to

fi t within the window. In the latter case, the window will expand or contract automati-

cally when an image is loaded so as to accommodate the image’s true size.

cvShowImage(“Example1”, img);

Whenever we have an image in the form of an IplImage* pointer, we can display it in an

existing window with cvShowImage(). Th e cvShowImage() function requires that a named

window already exist (created by cvNamedWindow()). On the call to cvShowImage(), the

* A proper program would check for the existence of argv[1] and, in its absence, deliver an instructional
error message for the user. We will abbreviate such necessities in this book and assume that the reader is
cultured enough to understand the importance of error-handling code.

02-R4886-AT1.indd 1702-R4886-AT1.indd 17 9/15/08 4:18:11 PM9/15/08 4:18:11 PM

18 | Chapter 2: Introduction to OpenCV

window will be redrawn with the appropriate image in it, and the window will resize

itself as appropriate if it was created using the CV_WINDOW_AUTOSIZE fl ag.

cvWaitKey(0);

Th e cvWaitKey() function asks the program to stop and wait for a keystroke. If a positive

argument is given, the program will wait for that number of milliseconds and then con-

tinue even if nothing is pressed. If the argument is set to 0 or to a negative number, the

program will wait indefi nitely for a keypress.

cvReleaseImage(&img);

Once we are through with an image, we can free the allocated memory. OpenCV ex-

pects a pointer to the IplImage* pointer for this operation. Aft er the call is completed,

the pointer img will be set to NULL.

cvDestroyWindow(“Example1”);

Finally, we can destroy the window itself. Th e function cvDestroyWindow() will close the

window and de-allocate any associated memory usage (including the window’s internal

image buff er, which is holding a copy of the pixel information from *img). For a simple

program, you don’t really have to call cvDestroyWindow() or cvReleaseImage() because all

the resources and windows of the application are closed automatically by the operating

system upon exit, but it’s a good habit anyway.

Now that we have this simple program we can toy around with it in various ways, but we

don’t want to get ahead of ourselves. Our next task will be to construct a very simple—

almost as simple as this one—program to read in and display an AVI video fi le. Aft er

that, we will start to tinker a little more.

Second Program—AVI Video
Playing a video with OpenCV is almost as easy as displaying a single picture. Th e only new

issue we face is that we need some kind of loop to read each frame in sequence; we may

also need some way to get out of that loop if the movie is too boring. See Example 2-2.

Example 2-2. A simple OpenCV program for playing a video fi le from disk

#include “highgui.h”

int main(int argc, char** argv) {
 cvNamedWindow(“Example2”, CV_WINDOW_AUTOSIZE);
 CvCapture* capture = cvCreateFileCapture(argv[1]);
 IplImage* frame;
 while(1) {
 frame = cvQueryFrame(capture);
 if(!frame) break;
 cvShowImage(“Example2”, frame);
 char c = cvWaitKey(33);
 if(c == 27) break;
 }
 cvReleaseCapture(&capture);
 cvDestroyWindow(“Example2”);
}

02-R4886-AT1.indd 1802-R4886-AT1.indd 18 9/15/08 4:18:11 PM9/15/08 4:18:11 PM

Moving Around | 19

Here we begin the function main() with the usual creation of a named window, in this

case “Example2”. Th ings get a little more interesting aft er that.

CvCapture* capture = cvCreateFileCapture(argv[1]);

Th e function cvCreateFileCapture() takes as its argument the name of the AVI fi le to be

loaded and then returns a pointer to a CvCapture structure. Th is structure contains all of

the information about the AVI fi le being read, including state information. When cre-

ated in this way, the CvCapture structure is initialized to the beginning of the AVI.

frame = cvQueryFrame(capture);

Once inside of the while(1) loop, we begin reading from the AVI fi le. cvQueryFrame()

takes as its argument a pointer to a CvCapture structure. It then grabs the next video

frame into memory (memory that is actually part of the CvCapture structure). A pointer

is returned to that frame. Unlike cvLoadImage, which actually allocates memory for the

image, cvQueryFrame uses memory already allocated in the CvCapture structure. Th us it

will not be necessary (or wise) to call cvReleaseImage() for this “frame” pointer. Instead,

the frame image memory will be freed when the CvCapture structure is released.

c = cvWaitKey(33);
if(c == 27) break;

Once we have displayed the frame, we then wait for 33 ms.* If the user hits a key, then c

will be set to the ASCII value of that key; if not, then it will be set to –1. If the user hits

the Esc key (ASCII 27), then we will exit the read loop. Otherwise, 33 ms will pass and

we will just execute the loop again.

It is worth noting that, in this simple example, we are not explicitly controlling

the speed of the video in any intelligent way. We are relying solely on the timer in

cvWaitKey() to pace the loading of frames. In a more sophisticated application it would

be wise to read the actual frame rate from the CvCapture structure (from the AVI) and

behave accordingly!

cvReleaseCapture(&capture);

When we have exited the read loop—because there was no more video data or because

the user hit the Esc key—we can free the memory associated with the CvCapture struc-

ture. Th is will also close any open fi le handles to the AVI fi le.

Moving Around
OK, that was great. Now it’s time to tinker around, enhance our toy programs, and ex-

plore a little more of the available functionality. Th e fi rst thing we might notice about

the AVI player of Example 2-2 is that it has no way to move around quickly within the

video. Our next task will be to add a slider bar, which will give us this ability.

* You can wait any amount of time you like. In this case, we are simply assuming that it is correct to play
the video at 30 frames per second and allow user input to interrupt between each frame (thus we pause
for input 33 ms between each frame). In practice, it is better to check the CvCapture structure returned by
cvCaptureFromCamera() in order to determine the actual frame rate (more on this in Chapter 4).

02-R4886-AT1.indd 1902-R4886-AT1.indd 19 9/15/08 4:18:11 PM9/15/08 4:18:11 PM

20 | Chapter 2: Introduction to OpenCV

Th e HighGUI toolkit provides a number of simple instruments for working with im-

ages and video beyond the simple display functions we have just demonstrated. One

especially useful mechanism is the slider, which enables us to jump easily from one part

of a video to another. To create a slider, we call cvCreateTrackbar() and indicate which

window we would like the trackbar to appear in. In order to obtain the desired func-

tionality, we need only supply a callback that will perform the relocation. Example 2-3

gives the details.

Example 2-3. Program to add a trackbar slider to the basic viewer window: when the slider is
moved, the function onTrackbarSlide() is called and then passed to the slider’s new value

#include “cv.h”
#include “highgui.h”

int g_slider_position = 0;
CvCapture* g_capture = NULL;

void onTrackbarSlide(int pos) {
 cvSetCaptureProperty(
 g_capture,
 CV_CAP_PROP_POS_FRAMES,
 pos
);
}

int main(int argc, char** argv) {
 cvNamedWindow(“Example3”, CV_WINDOW_AUTOSIZE);
 g_capture = cvCreateFileCapture(argv[1]);
 int frames = (int) cvGetCaptureProperty(
 g_capture,
 CV_CAP_PROP_FRAME_COUNT
);
 if(frames!= 0) {
 cvCreateTrackbar(
 “Position”,
 “Example3”,
 &g_slider_position,
 frames,
 onTrackbarSlide
);
 }
 IplImage* frame;
 // While loop (as in Example 2) capture & show video
 …
 // Release memory and destroy window
 …
 return(0);
}

In essence, then, the strategy is to add a global variable to represent the slider position

and then add a callback that updates this variable and relocates the read position in the

02-R4886-AT1.indd 2002-R4886-AT1.indd 20 9/15/08 4:18:11 PM9/15/08 4:18:11 PM

Moving Around | 21

video. One call creates the slider and attaches the callback, and we are off and running.*

Let’s look at the details.

int g_slider_position = 0;
CvCapture* g_capture = NULL;

First we defi ne a global variable for the slider position. Th e callback will need access to

the capture object, so we promote that to a global variable. Because we are nice people

and like our code to be readable and easy to understand, we adopt the convention of

adding a leading g_ to any global variable.

void onTrackbarSlide(int pos) {
 cvSetCaptureProperty(
 g_capture,
 CV_CAP_PROP_POS_FRAMES,
 pos
);

Now we defi ne a callback routine to be used when the user pokes the slider. Th is routine

will be passed to a 32-bit integer, which will be the slider position.

Th e call to cvSetCaptureProperty() is one we will see oft en in the future, along with its

counterpart cvGetCaptureProperty(). Th ese routines allow us to confi gure (or query in

the latter case) various properties of the CvCapture object. In this case we pass the argu-

ment CV_CAP_PROP_POS_FRAMES, which indicates that we would like to set the read position

in units of frames. (We can use AVI_RATIO instead of FRAMES if we want to set the position

as a fraction of the overall video length). Finally, we pass in the new value of the posi-

tion. Because HighGUI is highly civilized, it will automatically handle such issues as

the possibility that the frame we have requested is not a key-frame; it will start at the

previous key-frame and fast forward up to the requested frame without us having to

fuss with such details.

int frames = (int) cvGetCaptureProperty(
 g_capture,
 CV_CAP_PROP_FRAME_COUNT
);

As promised, we use cvGetCaptureProperty()when we want to query some data from the

CvCapture structure. In this case, we want to fi nd out how many frames are in the video

so that we can calibrate the slider (in the next step).

if(frames!= 0) {
 cvCreateTrackbar(
 “Position”,
 “Example3”,
 &g_slider_position,
 frames,
 onTrackbarSlide
);
}

* Th is code does not update the slider position as the video plays; we leave that as an exercise for the reader.
Also note that some mpeg encodings do not allow you to move backward in the video.

02-R4886-AT1.indd 2102-R4886-AT1.indd 21 9/15/08 4:18:11 PM9/15/08 4:18:11 PM

22 | Chapter 2: Introduction to OpenCV

Th e last detail is to create the trackbar itself. Th e function cvCreateTrackbar() allows us

to give the trackbar a label* (in this case Position) and to specify a window to put the

trackbar in. We then provide a variable that will be bound to the trackbar, the maxi-

mum value of the trackbar, and a callback (or NULL if we don’t want one) for when the

slider is moved. Observe that we do not create the trackbar if cvGetCaptureProperty()

returned a zero frame count. Th is is because sometimes, depending on how the video

was encoded, the total number of frames will not be available. In this case we will just

play the movie without providing a trackbar.

It is worth noting that the slider created by HighGUI is not as full-featured as some slid-

ers out there. Of course, there’s no reason you can’t use your favorite windowing toolkit

instead of HighGUI, but the HighGUI tools are quick to implement and get us off the

ground in a hurry.

Finally, we did not include the extra tidbit of code needed to make the slider move as the

video plays. Th is is left as an exercise for the reader.

A Simple Transformation
Great, so now you can use OpenCV to create your own video player, which will not be

much diff erent from countless video players out there already. But we are interested in

computer vision, and we want to do some of that. Many basic vision tasks involve the

application of fi lters to a video stream. We will modify the program we already have to

do a simple operation on every frame of the video as it plays.

One particularly simple operation is the smoothing of an image, which eff ectively re-

duces the information content of the image by convolving it with a Gaussian or other

similar kernel function. OpenCV makes such convolutions exceptionally easy to do. We

can start by creating a new window called “Example4-out”, where we can display the

results of the processing. Th en, aft er we have called cvShowImage() to display the newly

captured frame in the input window, we can compute and display the smoothed image

in the output window. See Example 2-4.

Example 2-4. Loading and then smoothing an image before it is displayed on the screen

#include “cv.h”
#include “highgui.h”

void example2_4(IplImage* image)

 // Create some windows to show the input
 // and output images in.
 //
 cvNamedWindow(“Example4-in”);

* Because HighGUI is a lightweight and easy-to-use toolkit, cvCreateTrackbar() does not distinguish
between the name of the trackbar and the label that actually appears on the screen next to the trackbar. You
may already have noticed that cvNamedWindow() likewise does not distinguish between the name of the
window and the label that appears on the window in the GUI.

02-R4886-AT1.indd 2202-R4886-AT1.indd 22 9/15/08 4:18:11 PM9/15/08 4:18:11 PM

A Simple Transformation | 23

Example 2-4. Loading and then smoothing an image before it is displayed on the screen (continued)

 cvNamedWindow(“Example4-out”);

 // Create a window to show our input image
 //
 cvShowImage(“Example4-in”, image);

 // Create an image to hold the smoothed output
 //
 IplImage* out = cvCreateImage(
 cvGetSize(image),
 IPL_DEPTH_8U,
 3
);

 // Do the smoothing
 //
 cvSmooth(image, out, CV_GAUSSIAN, 3, 3);

 // Show the smoothed image in the output window
 //
 cvShowImage(“Example4-out”, out);

 // Be tidy
 //
 cvReleaseImage(&out);

 // Wait for the user to hit a key, then clean up the windows
 //
 cvWaitKey(0);
 cvDestroyWindow(“Example4-in”);
 cvDestroyWindow(“Example4-out”);

}

Th e fi rst call to cvShowImage() is no diff erent than in our previous example. In the next

call, we allocate another image structure. Previously we relied on cvCreateFileCapture()

to allocate the new frame for us. In fact, that routine actually allocated only one frame

and then wrote over that data each time a capture call was made (so it actually returned

the same pointer every time we called it). In this case, however, we want to allocate our

own image structure to which we can write our smoothed image. Th e fi rst argument is

a CvSize structure, which we can conveniently create by calling cvGetSize(image); this

gives us the size of the existing structure image. Th e second argument tells us what kind

of data type is used for each channel on each pixel, and the last argument indicates the

number of channels. So this image is three channels (with 8 bits per channel) and is the

same size as image.

Th e smoothing operation is itself just a single call to the OpenCV library: we specify

the input image, the output image, the smoothing method, and the parameters for the

smooth. In this case we are requesting a Gaussian smooth over a 3 × 3 area centered on

each pixel. It is actually allowed for the output to be the same as the input image, and

02-R4886-AT1.indd 2302-R4886-AT1.indd 23 9/15/08 4:18:12 PM9/15/08 4:18:12 PM

24 | Chapter 2: Introduction to OpenCV

this would work more effi ciently in our current application, but we avoided doing this

because it gave us a chance to introduce cvCreateImage()!

Now we can show the image in our new second window and then free it: cvReleaseImage()

takes a pointer to the IplImage* pointer and then de-allocates all of the memory associ-

ated with that image.

A Not-So-Simple Transformation
Th at was pretty good, and we are learning to do more interesting things. In Example 2-4

we chose to allocate a new IplImage structure, and into this new structure we wrote the

output of a single transformation. As mentioned, we could have applied the transforma-

tion in such a way that the output overwrites the original, but this is not always a good

idea. In particular, some operators do not produce images with the same size, depth,

and number of channels as the input image. Typically, we want to perform a sequence of

operations on some initial image and so produce a chain of transformed images.

In such cases, it is oft en useful to introduce simple wrapper functions that both allocate

the output image and perform the transformation we are interested in. Consider, for

example, the reduction of an image by a factor of 2 [Rosenfeld80]. In OpenCV this is ac-

complished by the function cvPyrDown(), which performs a Gaussian smooth and then

removes every other line from an image. Th is is useful in a wide variety of important

vision algorithms. We can implement the simple function described in Example 2-5.

Example 2-5. Using cvPyrDown() to create a new image that is half the width and height of the input
image

IplImage* doPyrDown(
 IplImage* in,
 int filter = IPL_GAUSSIAN_5x5
) {

 // Best to make sure input image is divisible by two.
 //
 assert(in->width%2 == 0 && in->height%2 == 0);

 IplImage* out = cvCreateImage(
 cvSize(in->width/2, in->height/2),
 in->depth,
 in->nChannels
);
 cvPyrDown(in, out);
 return(out);
};

Notice that we allocate the new image by reading the needed parameters from the old

image. In OpenCV, all of the important data types are implemented as structures and

passed around as structure pointers. Th ere is no such thing as private data in OpenCV!

02-R4886-AT1.indd 2402-R4886-AT1.indd 24 9/15/08 4:18:12 PM9/15/08 4:18:12 PM

A Not-So-Simple Transformation | 25

Let’s now look at a similar but slightly more involved example involving the Canny edge

detector [Canny86] (see Example 2-6). In this case, the edge detector generates an image

that is the full size of the input image but needs only a single channel image to write to.

Example 2-6. Th e Canny edge detector writes its output to a single channel (grayscale) image

IplImage* doCanny(
 IplImage* in,
 double lowThresh,
 double highThresh,
 double aperture
) {
 If(in->nChannels != 1)
 return(0); //Canny only handles gray scale images

 IplImage* out = cvCreateImage(
 cvSize(cvGetSize(in),
 IPL_DEPTH_8U,
 1
);
 cvCanny(in, out, lowThresh, highThresh, aperture);
 return(out);
};

Th is allows us to string together various operators quite easily. For example, if we wanted

to shrink the image twice and then look for lines that were present in the twice-reduced

image, we could proceed as in Example 2-7.

Example 2-7. Combining the pyramid down operator (twice) and the Canny subroutine in a simple
image pipeline

IplImage* img1 = doPyrDown(in, IPL_GAUSSIAN_5x5);
IplImage* img2 = doPyrDown(img1, IPL_GAUSSIAN_5x5);
IplImage* img3 = doCanny(img2, 10, 100, 3);

// do whatever with ‘img3’
//
…
cvReleaseImage(&img1);
cvReleaseImage(&img2);
cvReleaseImage(&img3);

It is important to observe that nesting the calls to various stages of our fi ltering pipeline

is not a good idea, because then we would have no way to free the images that we are

allocating along the way. If we are too lazy to do this cleanup, we could opt to include

the following line in each of the wrappers:

cvReleaseImage(&in);

Th is “self-cleaning” mechanism would be very tidy, but it would have the following dis-

advantage: if we actually did want to do something with one of the intermediate images,

we would have no access to it. In order to solve that problem, the preceding code could

be simplifi ed as described in Example 2-8.

02-R4886-AT1.indd 2502-R4886-AT1.indd 25 9/15/08 4:18:12 PM9/15/08 4:18:12 PM

26 | Chapter 2: Introduction to OpenCV

Example 2-8. Simplifying the image pipeline of Example 2-7 by making the individual stages release
their intermediate memory allocations

IplImage* out;
out = doPyrDown(in, IPL_GAUSSIAN_5x5);
out = doPyrDown(out, IPL_GAUSSIAN_5x5);
out = doCanny(out, 10, 100, 3);

// do whatever with ‘out’
//
…
cvReleaseImage (&out);

One fi nal word of warning on the self-cleaning fi lter pipeline: in OpenCV we must al-

ways be certain that an image (or other structure) being de-allocated is one that was,

in fact, explicitly allocated previously. Consider the case of the IplImage* pointer re-

turned by cvCreateFileCapture(). Here the pointer points to a structure allocated as

part of the CvCapture structure, and the target structure is allocated only once when the

CvCapture is initialized and an AVI is loaded. De-allocating this structure with a call to

cvRelease Image() would result in some nasty surprises. Th e moral of this story is that,

although it’s important to take care of garbage collection in OpenCV, we should only

clean up the garbage that we have created.

Input from a Camera
Vision can mean many things in the world of computers. In some cases we are analyz-

ing still frames loaded from elsewhere. In other cases we are analyzing video that is be-

ing read from disk. In still other cases, we want to work with real-time data streaming

in from some kind of camera device.

OpenCV—more specifi cally, the HighGUI portion of the OpenCV library—provides us

with an easy way to handle this situation. Th e method is analogous to how we read

AVIs. Instead of calling cvCreateFileCapture(), we call cvCreateCameraCapture(). Th e

latter routine does not take a fi le name but rather a camera ID number as its argument.

Of course, this is important only when multiple cameras are available. Th e default value

is –1, which means “just pick one”; naturally, this works quite well when there is only

one camera to pick (see Chapter 4 for more details).

Th e cvCreateCameraCapture() function returns the same CvCapture* pointer, which we

can hereaft er use exactly as we did with the frames grabbed from a video stream. Of

course, a lot of work is going on behind the scenes to make a sequence of camera images

look like a video, but we are insulated from all of that. We can simply grab images from

the camera whenever we are ready for them and proceed as if we did not know the dif-

ference. For development reasons, most applications that are intended to operate in real

time will have a video-in mode as well, and the universality of the CvCapture structure

makes this particularly easy to implement. See Example 2-9.

02-R4886-AT1.indd 2602-R4886-AT1.indd 26 9/15/08 4:18:12 PM9/15/08 4:18:12 PM

Writing to an AVI File | 27

Example 2-9. Aft er the capture structure is initialized, it no longer matters whether the image is
from a camera or a fi le

CvCapture* capture;

if(argc==1) {
 capture = cvCreateCameraCapture(0);
} else {
 capture = cvCreateFileCapture(argv[1]);
}
assert(capture != NULL);

// Rest of program proceeds totally ignorant
…

As you can see, this arrangement is quite ideal.

Writing to an AVI File
In many applications we will want to record streaming input or even disparate captured

images to an output video stream, and OpenCV provides a straightforward method for

doing this. Just as we are able to create a capture device that allows us to grab frames

one at a time from a video stream, we are able to create a writer device that allows us

to place frames one by one into a video fi le. Th e routine that allows us to do this is

cvCreateVideoWriter().

Once this call has been made, we may successively call cvWriteFrame(), once for each

frame, and fi nally cvReleaseVideoWriter() when we are done. Example 2-10 describes

a simple program that opens a video fi le, reads the contents, converts them to a log-

polar format (something like what your eye actually sees, as described in Chapter 6),

and writes out the log-polar image to a new video fi le.

Example 2-10. A complete program to read in a color video and write out the same video in grayscale

// Convert a video to grayscale
 // argv[1]: input video file
 // argv[2]: name of new output file
 //
#include “cv.h”
#include “highgui.h”
main(int argc, char* argv[]) {
 CvCapture* capture = 0;
 capture = cvCreateFileCapture(argv[1]);
 if(!capture){
 return -1;
 }
 IplImage *bgr_frame=cvQueryFrame(capture);//Init the video read
 double fps = cvGetCaptureProperty (
 capture,
 CV_CAP_PROP_FPS
);

02-R4886-AT1.indd 2702-R4886-AT1.indd 27 9/15/08 4:18:12 PM9/15/08 4:18:12 PM

28 | Chapter 2: Introduction to OpenCV

Example 2-10. A complete program to read in a color video and write out the same video in
grayscale (continued)

 CvSize size = cvSize(
 (int)cvGetCaptureProperty(capture, CV_CAP_PROP_FRAME_WIDTH),
 (int)cvGetCaptureProperty(capture, CV_CAP_PROP_FRAME_HEIGHT)
);
 CvVideoWriter *writer = cvCreateVideoWriter(
 argv[2],
 CV_FOURCC(‘M’,‘J’,‘P’,‘G’),
 fps,
 size
);
 IplImage* logpolar_frame = cvCreateImage(
 size,
 IPL_DEPTH_8U,
 3
);
 while((bgr_frame=cvQueryFrame(capture)) != NULL) {
 cvLogPolar(bgr_frame, logpolar_frame,
 cvPoint2D32f(bgr_frame->width/2,
 bgr_frame->height/2),
 40,
 CV_INTER_LINEAR+CV_WARP_FILL_OUTLIERS);
 cvWriteFrame(writer, logpolar_frame);
 }
 cvReleaseVideoWriter(&writer);
 cvReleaseImage(&logpolar_frame);
 cvReleaseCapture(&capture);
 return(0);
}

Looking over this program reveals mostly familiar elements. We open one video; start

reading with cvQueryFrame(), which is necessary to read the video properties on some

systems; and then use cvGetCaptureProperty() to ascertain various important proper-

ties of the video stream. We then open a video fi le for writing, convert the frame to log-

polar format, and write the frames to this new fi le one at a time until there are none left .

Th en we close up.

Th e call to cvCreateVideoWriter() contains several parameters that we should under-

stand. Th e fi rst is just the fi lename for the new fi le. Th e second is the video codec with

which the video stream will be compressed. Th ere are countless such codecs in cir-

culation, but whichever codec you choose must be available on your machine (codecs

are installed separately from OpenCV). In our case we choose the relatively popular

MJPG codec; this is indicated to OpenCV by using the macro CV_FOURCC(), which takes

four characters as arguments. Th ese characters constitute the “four-character code” of

the codec, and every codec has such a code. Th e four-character code for motion jpeg is

MJPG, so we specify that as CV_FOURCC(‘M’,‘J’,‘P’,‘G’).

Th e next two arguments are the replay frame rate, and the size of the images we will be

using. In our case, we set these to the values we got from the original (color) video.

02-R4886-AT1.indd 2802-R4886-AT1.indd 28 9/15/08 4:18:12 PM9/15/08 4:18:12 PM

Exercises | 29

Onward
Before moving on to the next chapter, we should take a moment to take stock of where

we are and look ahead to what is coming. We have seen that the OpenCV API provides

us with a variety of easy-to-use tools for loading still images from fi les, reading video

from disk, or capturing video from cameras. We have also seen that the library con-

tains primitive functions for manipulating these images. What we have not yet seen are

the powerful elements of the library, which allow for more sophisticated manipulation

of the entire set of abstract data types that are important to practical vision problem

solving.

In the next few chapters we will delve more deeply into the basics and come to under-

stand in greater detail both the interface-related functions and the image data types. We

will investigate the primitive image manipulation operators and, later, some much more

advanced ones. Th ereaft er, we will be ready to explore the many specialized services

that the API provides for tasks as diverse as camera calibration, tracking, and recogni-

tion. Ready? Let’s go!

Exercises
Download and install OpenCV if you have not already done so. Systematically go

through the directory structure. Note in particular the docs directory; there you can

load index.htm, which further links to the main documentation of the library. Further

explore the main areas of the library. Cvcore contains the basic data structures and algo-

rithms, cv contains the image processing and vision algorithms, ml includes algorithms

for machine learning and clustering, and otherlibs/highgui contains the I/O functions.

Check out the _make directory (containing the OpenCV build fi les) and also the sam-

ples directory, where example code is stored.

Go to the 1. …/opencv/_make directory. On Windows, open the solution fi le opencv

.sln; on Linux, open the appropriate makefi le. Build the library in both the debug

and the release versions. Th is may take some time, but you will need the resulting

library and dll fi les.

Go to the 2. …/opencv/samples/c/ directory. Create a project or make fi le and

then import and build lkdemo.c (this is an example motion tracking program).

Attach a camera to your system and run the code. With the display window se-

lected, type “r” to initialize tracking. You can add points by clicking on video po-

sitions with the mouse. You can also switch to watching only the points (and not

the image) by typing “n”. Typing “n” again will toggle between “night” and “day”

views.

Use the capture and store code in Example 2-10, together with the 3. doPyrDown() code

of Example 2-5 to create a program that reads from a camera and stores downsam-

pled color images to disk.

02-R4886-AT1.indd 2902-R4886-AT1.indd 29 9/15/08 4:18:13 PM9/15/08 4:18:13 PM

30 | Chapter 2: Introduction to OpenCV

Modify the code in exercise 3 and combine it with the window display code in 4.

Example 2-1 to display the frames as they are processed.

Modify the program of exercise 4 with a slider control from Example 2-3 so that the 5.

user can dynamically vary the pyramid downsampling reduction level by factors

of between 2 and 8. You may skip writing this to disk, but you should display the

results.

02-R4886-AT1.indd 3002-R4886-AT1.indd 30 9/15/08 4:18:13 PM9/15/08 4:18:13 PM

