Homework Assignment \#4 Due: February 16, 2011 at 2:30 p.m.

1. Consider strings over the alphabet $\Sigma=\left\{\binom{0}{0},\binom{0}{1},\binom{1}{0},\binom{1}{1}\right\}$. If w is such a string, let $t(w)$ and $b(w)$ be the numbers that are represented in binary in the top and bottom rows of w. For example, if $w=\binom{1}{0}\binom{1}{1}\binom{0}{1}\binom{1}{1}$, then $t(w)=13$ (since 1101 is the binary representation of 13) and $b(w)=7$ (since 0111 is the binary representation of 7). By convention, we define $t(\varepsilon)=b(\varepsilon)=0$.
(a) Let $w, y \in \Sigma^{*}$. If $w=y \cdot\binom{1}{0}$, explain how the values $t(w)$ and $b(w)$ can be expressed in terms of $t(y)$ and $b(y)$.
(b) Give a detailed, formal proof of the following claim about the automaton M shown below.

Claim: If w is any string in Σ^{*}, then
(a) M is in state A after processing w if and only if $t(w)=b(w)$, and
(b) M is in state B after processing w if and only if $t(w)=b(w)+1$.

(c) Use part (b) to prove that the language accepted by M is $\left\{w \in \Sigma^{*}: t(w)=b(w)+1\right\}$.
2. If $n \in \mathbb{N}$, let $B(n)$ be the binary string (with no leading 0 's) that represents n. Now consider the language $L=\{B(n) \# B(n+1): n \in \mathbb{N}\}$ over the alphabet $\{0,1, \#\}$. For example, $11001 \# 11010$ is in L because 11001 is the binary representation of 25 and 11010 is the binary representation of 26 , and $26=25+1$. Is L regular? Prove your answer is correct.

