Homework Assignment \#3 Due: February 9, 2011 at 2:30 p.m.

1. Consider the alphabet $\Sigma=\left\{\binom{0}{0},\binom{0}{1},\binom{1}{0},\binom{1}{1}\right\}$. Let L be the set of all strings over the alphabet Σ where the top row is the reverse of the bottom row. More formally, a $\operatorname{string}\binom{a_{1}}{b_{1}}\binom{a_{2}}{b_{2}} \cdots\binom{a_{\ell}}{b_{\ell}}$ is in L if and only if $a_{i}=b_{\ell+1-i}$ for all $i \in\{1,2, \ldots, \ell\}$. For example, the string $\binom{0}{1}\binom{1}{1}\binom{1}{0}\binom{0}{1}\binom{1}{1}\binom{1}{0}$ is in L since the top row, 011011, is the reverse of the bottom row, 110110.

Is L regular? Prove your answer is correct.

