
Check07C

Number of students enrolled in the course: 198

Number of students that eChecked Check07C: 18 (9%)

Check08A

Number of students enrolled in the course: 191

Number of students that eChecked Check08A: 14 (7%)

Check08C

Number of students enrolled in the course: 173

Number of students that eChecked Check08C: 24 (14%)

Checks

,
3A 4D 5C 6C 7C 8A 8C

Big-O Notation

Definition

Let f : IN → IN and g : IN → IN be functions. Then f ∈ O(g) if

∃M ∈ IN : ∃F ∈ IN : ∀n ≥ M : f (n) ≤ F × g(n)

A note about the big-O notation can be found at
http://www.cse.yorku.ca/course/1020/sectionA/complexity.pdf.

http://www.cse.yorku.ca/course_archive/2010-11/F/1020/sectionA/complexity.pdf

Inheritance

Definition

Inheritance is a binary relation on classes. The pair (C ,P) of
classes is in the inheritance relation if the API of the class C
(child) contains

class C extends P

The API of the class P (parent) may (but does not have to)
contain

Direct Known Subclasses: C

The inheritance relation is also known as the is-a relation. Instead
of saying that (C ,P) is in the inheritance relation, we often simply
say that C is-a P .

Inheritance

We restrict ourselves to well-designed classes and the client
perspective.

Constructors are not inherited from the superclass.

Each public non-static (final) attribute is inherited from the
superclass.

Each public non-static method is inherited from the
superclass. If the subclass defines a method with the same
signature (name and list of types of parameters), then the
inherited method is overridden in the subclass.

Question

JMenuItem

JMenu

*

Question

What do the relations capture?

Question

JMenuItem

JMenu

*

Question

What do the relations capture?

Answer

A menu can have multiple items and a (nested) menu is an item.

CreditCard, RewardCard and Object

Object

CreditCard

RewardCard

The Object Class

Object

+ equals(Object) : boolean

+ toString() : String

If object is an Object and not null, then
object.equals(other) is equivalent to object == other.

If object is an Object and not null, then object.toString()

returns a String such as java.lang.Object@3e25a5 where the
hexadecimal 3e25a5 represents usually the memory address of
object.

The Method equals

Question

Each class has an equals(Object) method. Why?

The Method equals

Answer

Obviously, the Object class has an equals(Object) method.

Let C be a class different from the Object class. Since each class
is a descendent of the Object class , we know that there exist
classes C1, . . . , Cn such that C1 extends Object, C2 extends C1,
. . . , Cn extends Cn−1 and C extends Cn. Since Object has a
public equals(Object) method and C1 extends Object, C1 has a
public equals(Object) method (inherits it but may override it).
Since C1 has a public equals(Object) method and C2 extends
C2, C2 has a public equals(Object) method (inherits it but may
override it). . . . Since Cn has a public equals(Object) method
and C extends Cn, C has a public equals(Object) method
(inherits it but may override it).

The Method toString

Property

Each class has an toString() method.

Shapes

• •

• •

• •

• •

•

• •

•

• •

Shapes

Object

Shape

Rectangle Cube TriangularPrism

Square

Random Shapes

Question

The classes Rectangle, Cube, TriangularPrism, and Square

each have a static method getRandom(). Create a random shape.

Random Shapes

Random random = new Random();

final int NUMBER_OF_SHAPES = 4;

... shape;

switch (random.nextInt(NUMBER_OF_SHAPES))

{

case 0 : shape = Rectangle.getRandom(); break;

case 1 : shape = Cube.getRandom(); break;

case 2 : shape = TriangularPrism.getRandom(); break;

case 3 : shape = Square.getRandom(); break;

default : shape = null; break;

}

Random Shapes

Random random = new Random();

final int NUMBER_OF_SHAPES = 4;

... shape;

switch (random.nextInt(NUMBER_OF_SHAPES))

{

case 0 : shape = Rectangle.getRandom(); break;

case 1 : shape = Cube.getRandom(); break;

case 2 : shape = TriangularPrism.getRandom(); break;

case 3 : shape = Square.getRandom(); break;

default : shape = null; break;

}

What is the type of shape?

Random Shapes

Shape shape = Rectangle.getRandom();

Question

What is the return type of the method getRandom?

Random Shapes

Shape shape = Rectangle.getRandom();

Question

What is the return type of the method getRandom?

Answer

Rectangle.

Random Shapes

Shape shape = Rectangle.getRandom();

Question

What is the return type of the method getRandom?

Answer

Rectangle.

Question

Why can we assign a Rectangle object to a Shape variable?

Random Shapes

Shape shape = Rectangle.getRandom();

Question

What is the return type of the method getRandom?

Answer

Rectangle.

Question

Why can we assign a Rectangle object to a Shape variable?

Answer

Because a Rectangle is-a Shape.

Random Shapes

Shape shape = Cube.getRandom();

Question

What is the return type of the method getRandom?

Random Shapes

Shape shape = Cube.getRandom();

Question

What is the return type of the method getRandom?

Answer

Cube.

Random Shapes

Shape shape = Cube.getRandom();

Question

What is the return type of the method getRandom?

Answer

Cube.

Question

Why can we assign a Cube object to a Shape variable?

Random Shapes

Shape shape = Cube.getRandom();

Question

What is the return type of the method getRandom?

Answer

Cube.

Question

Why can we assign a Cube object to a Shape variable?

Answer

Because a Cube is-a Shape.

Types

Shape shape = Rectangle.getRandom();

Question

What is the declared type of shape?

Types

Shape shape = Rectangle.getRandom();

Question

What is the declared type of shape?

Answer

Shape.

Types

Shape shape = Rectangle.getRandom();

Question

What is the declared type of shape?

Answer

Shape.

Question

What is the actual type of shape?

Types

Shape shape = Rectangle.getRandom();

Question

What is the declared type of shape?

Answer

Shape.

Question

What is the actual type of shape?

Answer

Rectangle.

The Substitutability Principle

This principle is described in the textbook as

When a parent is expected, a child is accepted.

Barbara Liskov and Jeannette Wing. A behavioral notion of
subtyping. ACM Transactions on Programming Languages and

Systems, 16(6):1811–1841, November 1994.

Barbara Liskov

Barbara Liskov is the Ford Profes-
sor of Engineering in the MIT School
of Engineering’s Electrical Engineer-
ing and Computer Science depart-
ment and an Institute Professor at
the Massachusetts Institute of Tech-
nology. She earned her BA in math-
ematics at the University of Califor-
nia, Berkeley in 1961. In 1968 Stan-
ford University made her one of the
first women in the United States to
be awarded a Ph.D. from a computer
science department. Liskov won the
Turing Award in 2008.

source: Mirko Raner

Jeannette Wing

Jeannette Wing is the President’s
Professor of Computer Science at
Carnegie Mellon University. Wing
earned her S.B. and S.M. in Electrical
Engineering and Computer Science at
MIT in 1979. In 1983, she earned her
Ph.D. in Computer Science at MIT.

source: www.cmu.edu

Comparing Shapes

Rectangle rectangle = Rectangle.getRandom();

Square square = Square.getRandom();

output.println(rectangle.compareTo(square));

Question

What is the parameter type of the method compareTo?

Comparing Shapes

Rectangle rectangle = Rectangle.getRandom();

Square square = Square.getRandom();

output.println(rectangle.compareTo(square));

Question

What is the parameter type of the method compareTo?

Answer

Rectangle.

Comparing Shapes

Rectangle rectangle = Rectangle.getRandom();

Square square = Square.getRandom();

output.println(rectangle.compareTo(square));

Question

What is the parameter type of the method compareTo?

Answer

Rectangle.

Question

Why can we provide a Square object as an argument?

Comparing Shapes

Rectangle rectangle = Rectangle.getRandom();

Square square = Square.getRandom();

output.println(rectangle.compareTo(square));

Question

What is the parameter type of the method compareTo?

Answer

Rectangle.

Question

Why can we provide a Square object as an argument?

Answer

Because a Square is-a Rectangle.

A Collection of Shapes

ShapeCollection Shape
*

Question

Create a random collection of shapes and print its shapes each on
a seperate line.

A Collection of Shapes

ShapeCollection collection = ShapeCollection.getRandom();

for (Shape shape : collection)

{

output.println(shape.toString());

}

Early (Static) Binding

object.method(argument1, . . . argumentn);

Determine the declared type of object: C .

Determine the declared types of argument1, . . . , argumentn:
C1, . . . , Cn.

Of all methods named method in class C , pick the one whose
parameter types match (C1, . . .Cn) best: method(T1, . . .Tn)
of C .
(If no match can be found, the compiler issues an error.)

Late (Dynamic) Binding

object.method(argument1, . . . argumentn);

Assume that early binding resulted in method(T1, . . .Tn) of C .

Determine the actual type of object: T .

The late binding results in method(T1, . . .Tn) of T .

Note that the signature does not change during the late binding
(for efficiency reasons).

Early and Late Binding

Property

If early binding results in method(T1, . . .Tn) of C then each
subclass of C has a method with signature method(T1, . . .Tn).

Proof

Similar to the proof that each class has a toString() method.

Corollary

Late binding never fails.

Early Binding

for (Shape shape : collection)

{

output.println(shape.toString());

}

Question

What is the early binding for

shape.toString()

Early Binding

for (Shape shape : collection)

{

output.println(shape.toString());

}

Question

What is the early binding for

shape.toString()

Answer

toString() of Shape (inherited from Object).

Late Binding

for (Shape shape : collection)

{

output.println(shape.toString());

}

Question

What is the late binding for

shape.toString()

Late Binding

for (Shape shape : collection)

{

output.println(shape.toString());

}

Question

What is the late binding for

shape.toString()

Answer

toString() of Rectangle, Cube, TriangularPrism or Square.

Contrived Example

RewardCard

isSimilar(RewardCard) : boolean

CreditCard

isSimilar(CreditCard) : boolean

Early Binding

CreditCard one = new CreditCard(...);

CreditCard two = new CreditCard(...);

RewardCard three = new RewardCard(...);

CreditCard four = new RewardCard(...);

Question

What is the early binding for

one.isSimilar(two);

Early Binding

CreditCard one = new CreditCard(...);

CreditCard two = new CreditCard(...);

RewardCard three = new RewardCard(...);

CreditCard four = new RewardCard(...);

Question

What is the early binding for

one.isSimilar(two);

Answer

isSimilar(CreditCard) of CreditCard.

Late Binding

CreditCard one = new CreditCard(...);

CreditCard two = new CreditCard(...);

RewardCard three = new RewardCard(...);

CreditCard four = new RewardCard(...);

Question

What is the late binding for

one.isSimilar(two);

Late Binding

CreditCard one = new CreditCard(...);

CreditCard two = new CreditCard(...);

RewardCard three = new RewardCard(...);

CreditCard four = new RewardCard(...);

Question

What is the late binding for

one.isSimilar(two);

Answer

isSimilar(CreditCard) of CreditCard.

Early Binding

CreditCard one = new CreditCard(...);

CreditCard two = new CreditCard(...);

RewardCard three = new RewardCard(...);

CreditCard four = new RewardCard(...);

Question

What is the early binding for

one.isSimilar(three);

Early Binding

CreditCard one = new CreditCard(...);

CreditCard two = new CreditCard(...);

RewardCard three = new RewardCard(...);

CreditCard four = new RewardCard(...);

Question

What is the early binding for

one.isSimilar(three);

Answer

isSimilar(CreditCard) of CreditCard.

Late Binding

CreditCard one = new CreditCard(...);

CreditCard two = new CreditCard(...);

RewardCard three = new RewardCard(...);

CreditCard four = new RewardCard(...);

Question

What is the late binding for

one.isSimilar(three);

Late Binding

CreditCard one = new CreditCard(...);

CreditCard two = new CreditCard(...);

RewardCard three = new RewardCard(...);

CreditCard four = new RewardCard(...);

Question

What is the late binding for

one.isSimilar(three);

Answer

isSimilar(CreditCard) of CreditCard.

Early Binding

CreditCard one = new CreditCard(...);

CreditCard two = new CreditCard(...);

RewardCard three = new RewardCard(...);

CreditCard four = new RewardCard(...);

Question

What is the early binding for

three.isSimilar(one);

Early Binding

CreditCard one = new CreditCard(...);

CreditCard two = new CreditCard(...);

RewardCard three = new RewardCard(...);

CreditCard four = new RewardCard(...);

Question

What is the early binding for

three.isSimilar(one);

Answer

isSimilar(CreditCard) of CreditCard.

Late Binding

CreditCard one = new CreditCard(...);

CreditCard two = new CreditCard(...);

RewardCard three = new RewardCard(...);

CreditCard four = new RewardCard(...);

Question

What is the late binding for

three.isSimilar(one);

Late Binding

CreditCard one = new CreditCard(...);

CreditCard two = new CreditCard(...);

RewardCard three = new RewardCard(...);

CreditCard four = new RewardCard(...);

Question

What is the late binding for

three.isSimilar(one);

Answer

isSimilar(CreditCard) of CreditCard.

Early Binding

CreditCard one = new CreditCard(...);

CreditCard two = new CreditCard(...);

RewardCard three = new RewardCard(...);

CreditCard four = new RewardCard(...);

Question

What is the early binding for

three.isSimilar(one);

Early Binding

CreditCard one = new CreditCard(...);

CreditCard two = new CreditCard(...);

RewardCard three = new RewardCard(...);

CreditCard four = new RewardCard(...);

Question

What is the early binding for

three.isSimilar(one);

Answer

isSimilar(CreditCard) of CreditCard.

Late Binding

CreditCard one = new CreditCard(...);

CreditCard two = new CreditCard(...);

RewardCard three = new RewardCard(...);

CreditCard four = new RewardCard(...);

Question

What is the late binding for

three.isSimilar(one);

Late Binding

CreditCard one = new CreditCard(...);

CreditCard two = new CreditCard(...);

RewardCard three = new RewardCard(...);

CreditCard four = new RewardCard(...);

Question

What is the late binding for

three.isSimilar(one);

Answer

isSimilar(CreditCard) of CreditCard.

Early Binding

CreditCard one = new CreditCard(...);

CreditCard two = new CreditCard(...);

RewardCard three = new RewardCard(...);

CreditCard four = new RewardCard(...);

Question

What is the early binding for

three.isSimilar(four);

Early Binding

CreditCard one = new CreditCard(...);

CreditCard two = new CreditCard(...);

RewardCard three = new RewardCard(...);

CreditCard four = new RewardCard(...);

Question

What is the early binding for

three.isSimilar(four);

Answer

isSimilar(CreditCard) of CreditCard.

Late Binding

CreditCard one = new CreditCard(...);

CreditCard two = new CreditCard(...);

RewardCard three = new RewardCard(...);

CreditCard four = new RewardCard(...);

Question

What is the late binding for

three.isSimilar(four);

Late Binding

CreditCard one = new CreditCard(...);

CreditCard two = new CreditCard(...);

RewardCard three = new RewardCard(...);

CreditCard four = new RewardCard(...);

Question

What is the late binding for

three.isSimilar(four);

Answer

isSimilar(CreditCard) of CreditCard.

Early Binding

CreditCard one = new CreditCard(...);

CreditCard two = new CreditCard(...);

RewardCard three = new RewardCard(...);

CreditCard four = new RewardCard(...);

Question

What is the early binding for

four.isSimilar(three);

Early Binding

CreditCard one = new CreditCard(...);

CreditCard two = new CreditCard(...);

RewardCard three = new RewardCard(...);

CreditCard four = new RewardCard(...);

Question

What is the early binding for

four.isSimilar(three);

Answer

isSimilar(CreditCard) of CreditCard.

Late Binding

CreditCard one = new CreditCard(...);

CreditCard two = new CreditCard(...);

RewardCard three = new RewardCard(...);

CreditCard four = new RewardCard(...);

Question

What is the late binding for

four.isSimilar(three);

Late Binding

CreditCard one = new CreditCard(...);

CreditCard two = new CreditCard(...);

RewardCard three = new RewardCard(...);

CreditCard four = new RewardCard(...);

Question

What is the late binding for

four.isSimilar(three);

Answer

isSimilar(CreditCard) of CreditCard.

Early Binding

CreditCard one = new CreditCard(...);

CreditCard two = new CreditCard(...);

RewardCard three = new RewardCard(...);

CreditCard four = new RewardCard(...);

Question

What is the early binding for

three.isSimilar((RewardCard) four);

Early Binding

CreditCard one = new CreditCard(...);

CreditCard two = new CreditCard(...);

RewardCard three = new RewardCard(...);

CreditCard four = new RewardCard(...);

Question

What is the early binding for

three.isSimilar((RewardCard) four);

Answer

isSimilar(RewardCard) of RewardCard.

Late Binding

CreditCard one = new CreditCard(...);

CreditCard two = new CreditCard(...);

RewardCard three = new RewardCard(...);

CreditCard four = new RewardCard(...);

Question

What is the late binding for

three.isSimilar((RewardCard) four);

Late Binding

CreditCard one = new CreditCard(...);

CreditCard two = new CreditCard(...);

RewardCard three = new RewardCard(...);

CreditCard four = new RewardCard(...);

Question

What is the late binding for

three.isSimilar((RewardCard) four);

Answer

isSimilar(RewardCard) of RewardCard.

