Recursion & Iteration

York University CSE 3401
Vida Movahedi

York University- CSE 3401- V. Movahedi 13 _Recursion<eration

Overview

e Recursion
— Examples

e |teration
— Examples

e |teration vs. Recursion

— Example

[ref.: Chap 5,6- Wilensky]

York University- CSE 3401- V. Movahedi

13 _Recursion<eration

Recursion

e A natural programming style in LISP

e A function is recursive if it calls itself
— Boundary condition: not recursive

— Recursive condition: must be a smaller problem to
converge

Example- factorial

(defun factorial (n)
(cond ((zerop n) 1)
(t (* n (factorial (1- n))))))

— The above code works if n is a positive integer.
— Other numbers (not positive integers) will not reach the
boundary condition and a stack overflow error will be

encountered.
— A better implementation:

(defun factorial (n)
(cond ((not (and (integerp n) (>=n 0))) nil)
((zerop n) 1)
(t (* n (factorial (1- n))))))

Example- length of list

e Using cond:
(defun llist (Ist)
(cond ((null Ist) 0)
(t (1+ (llist (cdr Ist))))))

e Usingif:
(defun llist (Ist)
(if (null Ist) 0

(1+ (llist (cdr Ist)))))

e This one will return O if an empty list or an atom
(note nil is an atom)
(defun llist (Ist)
(if (atom Ist) O (1+ (llist (cdrlst)))))

York University- CSE 3401- V. Movahedi 13_Recurs ion&Iteration

Example- member of list

e Testif an element is a member of a list

(defun Imember (e Ist)

(cond ((null Ist) nil)
((equal e (carlst)))
(t (Imember e (cdr lst)))))
e Another way of ertlng above is: The second argument of and
(defun Imember (e Ist will be evaluated, only if the
first is evaluated to true
(and st
(i.e. non-nil)
(or (equal e (car Ist))

\ 7 (Imember e (cdrlst)))))

The second argument of or
will be evaluated, only if the
first is evaluated to false 13_Recursion<eration 6

Example- member of list

e Test if an elementis a member of a list, return the
portion of list from the point of first match

(defun Imember (e Ist)

(cond ((null Ist) nil)
((equal e (carlst)) Ist)
(t (Imember e (cdrlst)))))

e Exercise: Write a function that looks for members
inside nested lists.

York University- CSE 3401- V. Movahedi 13_Recursion<eration

Example- substitution in nested lists

e Function Isubst(in out Ist) substitutes every occurrence

of out with in in Ist, which can be a list or an atom.
— e.g. (Isubst ‘@ x ‘(b (x x) x)) will evaluate to (B (A A) A)

(defun Isubst (in out Ist)

(cond
((equal out Ist) in) ; if Ist is out, return in
((atom Ist) |st) ; otherwise if atom, no change

; otherwise two recursions cons’ed
(t (cons (lsubst in out (car Ist))
(Isubst in out (cdr Ist))))))

e Exercise: Change the function definition to only substitute if /st is a
list (no change if it is an atom)

York University- CSE 3401- V. Movahedi 13_Recursion<eration

Iteration

e |teration:

— Aloop, to be executed repeatedly
— Boundary condition (or terminating condition)

— A return value upon termination

— Index variables, their initial value, and the modification
rule upon each iteration

* Unlike recursion, we need special functions, such as
do to implement iteration

Iteration- Do

P

General form

(do
((varl vall repl)
(var2 val2 rep2)...)
exit-clause
forml form2 ...)

— In which exit-clause can be nil or in the form of
(test test-form1l test-form2 ...)
Assign all vari with corresponding (evaluated) vali in parallel.

Examine exit-clause. If nil, return nil as value of do (and stop).
Otherwise, if test evaluates to true, evaluate test-formi in order.
Return the value of the last form as the value of do (and stop).

If test evaluates to false, evaluate formi in order.
Assign all vari with corresponding (evaluated) repi in parallel.
Go to step 2.

Example

e Find length of list
For example ; Two index variables:

> (dolength ‘(x vy z)) tlst and sum
3 They are just like formal

parameters: local to do.

(defun dolength(lst)

(do
((tlst Ist (cdr tlst))
(sum 0 (1+ sum))) Terminating condition:
((atom tlst) sum))) when the list is an atom
(including nil)
Value of sum is returned upon
termination.

York University- CSE 3401- V. Movahedi 13_Recursion<eration

11

Examples

e Use do to return a list which is the same as a list Ist1

without the first n elements
— assuming its length is greater than n

(do ((x n (1-x)) (Ist2 Istl (cdr Ist2)))
((zerop x) Ist2))

e Use do to return a list of numbers from 1 to n

(do ((m n(1- m)) (x nil (cons m x)))
((zerop m) x))

Do vs. Do*

* do: evaluates all vali first and assigns index variables in
parallel
> (setq n 3)
3
>(do ((m n(1- m)) (x nil (cons mx))) ((zerop m) x))
(1 2 3)

 do*: Evaluation of vali and assignment to vari are done in
sequential order

>(do* ((mn (1- m)) (x nil (cons mx))) ((zerop m) x))
(0 1 2)

Iteration- other functions

* dolist: iterates over elements of a list
(dolist (var list-val return-val) form1 form2 ...)
— In each iteration, val is assigned with a value from list of
values list-val,
— Loops over formi, until all done.
— Then return-val is returned.

 dotimes: iteration over integer values up to a limit
(dotimes (var stop-val return-val) form1 form2 ...)
— Initializes var to 0,
— In each iteration formi are evaluated
— var is increased by 1, until it reaches stop-val, at which
point return-val is returned.

Example

e Searching for a certain element in a given list
(setg mylist (123 405))
(setq srch 2)

(dolist (i mylist nil)
(cond ((equal i srch) (return t))))

— What will be returned in above case?
Answer. T will be returned, since 2 exists in mylist.

— Note: dolist goes through elements of the list without the
need for us to explicitly use car and cdr

Example

e Delete the first n items from a list
(setg mylist (12345))
(setg n 2)

(dotimes (i n mylist)
(setg mylist (cdr mylist)))

— What will be returned in above case?
Answer. (3 4 5) will be returned.

Iteration vs. Recursion

Example: Reversing a list

 Using iteration:

(defun do-rev(lst)
(do ((x Ist (cdr x)) (result nil (cons (car x) result)))
(null x) result)))

 Using recursion:
— Cannot add to the end of a list
— We therefore use an extra variable (accumulator)
— More overhead due to recursive calls

(defun rev2 (Ist acc)
(cond ((null Ist) acc)
(t (rev2 (cdr Ist) (cons (car Ist) acc)))))

(defun reverse(lst) (rev2 Ist nil))
York University- CSE 3401- V. Movahedi 13_Recursion<eration

17

