Functions,
Conditionals & Predicates

York University CSE 3401
Vida Movahedi

York University- CSE 3401- V. Movahedi 12_Functions

Overview

e Functions as lambda terms

e Defining functions

e Variables (bound vs. free, local vs. global)
e Scoping (static vs. dynamic)

* Predicates

e Conditionals

[ref.: Wilensky Chap 3-4]

Functions as lambda terms

* Inlambda calculus, function f(x)=x? is written as
(AX.(* x X))

 |n LISP it is written as:
(lambda (x) (* x x))

* |[n lambda calculus, an application of above function
to 5 is written as

((AX.(* X X)) 5)

e |n LISP, it is written as
((lambda (x) (* x x)) 5)

York University- CSE 3401- V. Movahedi

Functions as lambda terms

* |nthe LISP interpreter environment, we type in a lambda
term for evaluation ([3-reduction).

e |f we write a list for evaluation, the first element is always
assumed to be a function (We input a 3-redex).

> ((lambd * 5) <«
25((;:‘m 20 T 3) BN A B-redex: A lambda

> ((lambda (x y) (cons x y)) 1 ‘(2 3 4)) abstraction applied to a term

(1234)

e |tis not convenient to write the lambda definition of
functions every time we need them, therefore we can
give them names using defun.

York University- CSE 3401- V. Movahedi 4

Defining Functions

e Defining functions using defun

> (defun half(x) (/ x 2))
HALF

> (half 3)

3/2

> (defun average (xy) (/ (+ x y) 2.0))
AVERAGE

> (average 3 2)
2.5

e Formal parameters

— x and y above are formal parameters of function definition of
average

— Formal parameters must be symbols

— The value of formal parameters is not confused with their value
outside the definition

More generally ...

* Function definition:
(defun fname (p1 p2 ...pn)

(... body 1...)
(... body 2...) ...
(... body m ...))

e Calling above function
(fname al a2 ...an)

e Evaluation:

(1) Definition of fname is retrieved

(2) Supplied arguments al...an are evaluated to get actual
arguments bl...bn

(3) Formal arguments p1...pn are assigned actual arguments
bl...bn respectively

(4) Each code in body 1 to body m is evaluated in the order

(5) The value returned by body m is returned.

Bound vs. free variables

York University- CSE 3401- V. Movahedi

> (setq x 5) /\
5

> (defun funone (x) (* x 2))

X is the formal
parameter of funone
and is a bound variable

FUNONE
> (funone 6)

12

>X <«

5

Value of x at top-level
does not change.

> (defun funtwo (y) (* xy))
FUNTWO

> (funtwo 6)
30

>y
Error! Variable Y has no value

X is NOT the formal
parameter of funtwo
and therefore is free
here. Its value is the
same as top-level.

12_Functions

Bound vs. free (cont.)

> (setg sum 0)

0 X is bound,
> (defun getsum(x) y and sum are free

(setqy 10)
(setg sum (+ x y)))

Changes to free

> (getsum 5) variables are NOT local

15 to a function!

> sum

15

>y /\ setq creates a variable
10 at top-level!

York University- CSE 3401- V. Movahedi 12_Functions

Bound vs. free (cont.)

Each time a function is called, a new variable is created
for each formal parameter.

Changing value of formal parameters does not effect
value of symbols with the same name at interpreter level
(top-level).

Formal parameters are bound variables.

A symbol (variable) used in definition of a function that is
not a formal parameter of the function is a free variable.

Changing value of free variables changes their value at
top-level.

Local vs. global variables

Bound variables are local variables, can only be accessed
inside function calls.

A variable at the top-level (interpreter level) is a global
variable.

It can be accessed at the top-level, or inside function calls.
Free variables refer to the same global variables at top-level.

If setq is used with free variables, it can create global
variables, or change value of existing ones! Do not use inside
function definitions unless you intentionally want global
effect. Not a good idea!

Let and Let*

e Use let for temporary binding
(let ((varl valuel)
(var2 value2) ...
(varm valuem))
(body1)
(body?2) ...
(bodyn))
— The value returned by body n is returned

— Let assigns all values in parallel, use let* if you need sequential

assignment

e Example

> (defun getsum(x)
(let ((z 10)

(+x2)))
> (getsum 10)

20
> 7
Error! Variable z has no value

York University- CSE 3401- V. Movahedi 12_Functions

z is bound temporarily
inside let.
No global variable z!

11

Static vs. Dynamic Scoping

* Scoping
— referring to the method of choosing which variable is
referenced by a symbol inside a function

1. Static (or lexical) scoping: A given symbol refers to a
variable in its local environment, and depends on the
function definition in which it is accessed.

2. Dynamic scoping: A given symbol refers to the most
recently created variable with that name (at any level).

— Common LISP uses lexical scoping for formal parameters
of a function.

Static vs. Dynamic (cont.)

e Example:
>(defun f (x y)
(+x(gY))
>(defun g (y)
(* 10 x))

By static scoping: By dynamic scoping:

> (f 2 3)

Error! X has no value in G!
< Static scoping is used in

Common LISP.

> (f 2 3)
22

York University- CSE 3401- V. Movahedi 12_Functions

13

Saving function in files

e Save your function definitions in files
e Load into LISP using load

e Examples:
(load ‘test.Isp)

(load ‘mylisp/test.lsp)
(load “c:\\lispcode\\first.L”)

York University- CSE 3401- V. Movahedi 12_Functions

14

LOGIC AS FUNCTIONS

True and False

The constant nil indicates false
The constant t indicates true
Any non-nil value is actually true as well

Some built-in predicates, such as not, and, or, ...

Some built-in predicates

(atom arg) returns T if arg is an atom (NIL otherwise)
(listp arg) returns T if arg is a list
(null arg) returns T if arg is nil

(note: not and null have the same behaviour)
(symbolp arg) returns T if arg is a symbol
(numberp arg) returns T if arg is a number
(integerp arg) returns T if arg is an integer

(equal argl arg2) returns T if the two arguments look alike
(typep arg type) returns T if arg is of type ‘type’

type can be ‘number, ‘atom, ‘symbol, ‘list,
{
null, ...

Examples

> (setq x 5)

5

> (atom x)

.

> (atom ‘x)

.

> (atom 5)

T

> (atom ‘(1 2 3))
NIL

> (listp ‘(1 2 3))
T

> (listp x)

NIL

York University- CSE 3401- V. Movahedi

> (numberp x)
-

> (numberp ‘x)
NIL

> (symbolp x)
NIL

> (symbolp ‘x)
T

> (typep ‘X ‘number)
NIL

> (typep x ‘number)
T

12_Functions

> (typep ‘x ‘symbol)
T

> (atom nil)
T

> (listp nil)
T

> (numberp nil)
NIL

> (symbolp nil)
T

> (null nil)
T

18

Built-in predicates for arithmetic

(zerop arg) returns T if arg is zero

(oddp arg) returns T if arg is an odd number
(evenp arg) returns T if arg is an even number
(> argl arg?) returns T if argl is greater than arg2

(<, >=, <= are also defined)
(= argl arg2) returns T if arguments are equal numbers

York University- CSE 3401- V. Movahedi 12_Functions

19

Conditionals: cond

e cond is similar to “if ... then “

— Example: If x is a list, return its head
(cond

((listp x) (car x)))
— Example: If x is a list, return its head, otherwise return x

itself.
(cond
((lisp x) (car x)) Two cond clauses in this example.
\ If the test in one cond clause is true,
(T X)) |
the rest of clause is evaluated and
> all other cond clauses are ignored.
T acts like “otherwise”

York University- CSE 3401- V. Movahedi 12_Functions 20

Conditionals: cond

General form: (cond
(expll expl2 exp 13...)
(exp21 expl2 exp 13...)

iexpnl expl2 exp 13...))
Each of the above list of expressions (1 to n) is called a cond clause.

Each cond clause can have one to as many expressions. The first
expression in each cond clause is the test.

The cond clauses will be examined in the order. If the test of a cond
clause evaluates to false, the rest of expressions in that cond clause
will be ignored and the next cond clause will be examined.

If the test evaluates to true, the rest of the expressions in the cond
clause will be evaluated. The value returned by the last expression
is returned as the value of cond. All remaining cond clauses will be
ignored.

If none of the tests evaluates to true, cond will evaluate to nil.

Example

(defun mymin (xy z)
(cond

((not (and (numberp x)
(numberp y)
(numberp z))) nil)

((and (<=xvVy) (<=x12)) x)

((and (<=yx) (<=yz)) V)

(Tz)))

e |t accepts 3 arguments. If all arguments are numbers,
it returns the minimum. Otherwise it will return nil.

Example

(defun nilzero (x)

(cond
((null x))
((and (numberp x)(zerop x)))))

If the given argument is nil or zero, it will return T, otherwise
nil.

Both cond clauses have only one expression (only the test). If
the test is true, its value true (T) will be returned.

If none of them evaluates to true, nil will be returned.

In the second cond clause, we cannot use zerop without
numberp. Why?

Other conditionals

o |f

These two expressions perform the same function,
(Add e to list Ist if it is not already a member of Ist)
(member is a pre-defined function in Common LISP)

(if (memberelst)Ist (cond ((member e Ist) Ist)
(cons e Ist)) - (t (cons e Ist)))

e |f evaluates its first argument, if true, evaluates and returns
the second argument. Otherwise evaluates and returns the

third argument (if present).

e QOthers such as when, unless, case

