
CSE 3401- Summer 2010
Functional Programming- Review Questions

Assume we have entered the following expressions in the LISP
interpreter:
> (setq x 5)
5
> (setq lst '(1 2 3 4))
(1 2 3 4)
> (setq fname #'(lambda (x) (* 10 x)))
#<FUNCTION :LAMBDA (X) (* 10 X)>
> (setq gname #'(lambda (x) (cons x 'x)))
#<FUNCTION :LAMBDA (X) (CONS X 'X)>

How would LISP respond to the following?

> (car lst)

> (cdr lst)

> (cadr lst)

> (fname lst)

> (fname (car lst))

> (apply fname (car lst))

> (apply fname lst)

> (apply fname (list (car lst)))

> (mapcar fname lst)

> (mapc fname lst)

> (1 . nil)

> '(1 . nil)

> (cons x 'x)

> (cons '(1 2 3) 'x)

> (mapcar gname lst)

> (maplist gname lst)

==

Use cond to write a function f1 as follows:
f1(x)= -1 x < 0
 1 0 <= x < 10
 2 10 <= x < 30
 3 x >= 30

==

Use cond to write a function f2 with two arguments x and lst
that does the following:

- If x is a negative number, it opens the file "data.txt", reads
from it once and returns the read number (we'll assume it will
be a number) as string containing the number as a float with 2
digits after the decimal point.

- If x is zero, it returns true

- If x is a positive number, it returns the first two elements
of lst (we assume lst has at least two elements)

- If x is anything else, it returns nil

==

If f3 is defined as follows, how would LISP respond to the
following?
(defun f3 (lst n p)
 (do ((tlst lst (cdr tlst))
 (rslt '(0 . nil) (cons (car tlst) rslt))
 (i (1- n) (1- i)))

 ((zerop i) (cond ((zerop p) rslt)
 (t n)))
 (if (null tlst) (return "Error"))))

> (f3 '(1 2 3) 3 0)

> (f3 '(1 2 3) 3 1)

> (f3 '(1 2 3) 5 1)

> (f3 '(1 2 3) 5 0)

> (f3 '(1 2 3) 4 0)

What if do was replaced with do*?

==

Alonzo Church has defined the natural numbers in lambda calculus
(known as the Church numerals) as follows:

0 := λfx.x
1 := λfx.f x
2 := λfx.f (f x)
3 := λfx.f (f (f x))

Show that if PLUS is defined as
PLUS := λmnfx.m f (n f x)
then adding (or PLUS) 2 and 1 is equivalent to 3.

(Try AND or NOT in logical predicates, or multiplication in
arithmetic, see Wikipedia)

==

[ref: CSE3401 Summer 2009 Assignment #2]
Write a recursive function COMPRESS and DECOMPRESS that takes a
list as a parameter and replaces any consecutive occurrence of
elements with the element and its count. For example:

> (compress ‘(a a a b b x 2 2))
(a 3 b 2 x 1 2 2)
> (decompress ‘(a 3 b 2 x 1 2 2))
 (a a a b b x 2 2)

==

Write a function that
- Creates a sequence of bits (0 or 1) of length len.

- Convert a sequence of bits to its decimal equivalent:

- Write a function that inverts a random bit in a sequence with
a given probability.

