- Easily Interfaced to Microprocessors
- On-Chip Data Latches
- Monotonic Over the Entire A/D Conversion Range
- Segmented High-Order Bits Ensure Low-Glitch Output
- Interchangeable With Analog Devices AD7524, PMI PM-7524, and Micro Power Systems MP7524
- Fast Control Signaling for Digital Signal-Processor Applications Including Interface With TMS320
- CMOS Technology

KEY PERFORMANCE SPECIFICATIONS	
Resolution	8 Bits
Linearity error	$1 / 2 \mathrm{LSB}$ Max
Power dissipation at $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	$5 \mathrm{~mW} \operatorname{Max}$
Setting time	100 ns Max
Propagation delay time	80 ns Max

description

The TLC7524C, TLC7524E, and TLC7524I are CMOS, 8-bit, digital-to-analog converters (DACs) designed for easy interface to most popular microprocessors.

D, N, OR PW PACKAGE
(TOP VIEW)

FN PACKAGE (TOP VIEW)

NC-No internal connection

The devices are 8-bit, multiplying DACs with input latches and load cycles similar to the write cycles of a random access memory. Segmenting the high-order bits minimizes glitches during changes in the most significant bits, which produce the highest glitch impulse. The devices provide accuracy to $1 / 2$ LSB without the need for thin-film resistors or laser trimming, while dissipating less than 5 mW typically.
Featuring operation from a 5-V to 15-V single supply, these devices interface easily to most microprocessor buses or output ports. The 2- or 4-quadrant multiplying makes these devices an ideal choice for many microprocessor-controlled gain-setting and signal-control applications.

The TLC7524C is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. The TLC7524I is characterized for operation from $-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$. The TLC7524E is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

AVAILABLE OPTIONS

$\mathbf{T}_{\mathbf{A}}$	PACKAGE			
	SMALL OUTLINE PLASTIC DIP (D)	PLASTIC CHIP CARRIER (FN)	PLASTIC DIP (N)	SMALL OUTLINE (PW)
	TLC7524CD	TLC7524CFN	TLC7524CN	TLC7524CPW
$-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	TLC7524ID	TLC7524IFN	TLC7524IN	TLC7524IPW
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	TLC7524ED	TLC7524EFN	TLC7524EN	-

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

functional block diagram

Terminal numbers shown are for the D or N package.
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Digital input voltage range, V_{1}		V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Operating free-air temperature range, T_{A} :	TLC7524C	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
	TLC7524I	$-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
	TLC7524E	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D, N, or PW package $260^{\circ} \mathrm{C}$		

TLC7524C, TLC7524E, TLC7524I 8-BIT MULTIPLYING DIGITAL-TO-ANALOG CONVERTERS

SLAS061C - SEPTEMBER 1986 - REVISED NOVEMBER 1998

recommended operating conditions

electrical characteristics over recommended operating free-air temperature range, $\mathrm{V}_{\text {ref }}= \pm 10 \mathrm{~V}$, OUT1 and OUT2 at GND (unless otherwise noted)

PARAMETER			TEST CONDITIONS		D $=5 \mathrm{~V}$			D $=15$		UNIT	
			MIN	TYP	MAX	MIN	TYP	MAX			
IIH	High-level input current			$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{DD}}$			10			10	$\mu \mathrm{A}$
IIL	Low-level input current		$\mathrm{V}_{\mathrm{I}}=0$			-10			-10	$\mu \mathrm{A}$	
IIkg	Output leakage current	OUT1	$\begin{array}{\|l\|} \hline \mathrm{DB} 0-\mathrm{DB} 7 \text { at } 0 \mathrm{~V}, \quad \overline{\mathrm{WR}}, \overline{\mathrm{CS}} \text { at } 0 \mathrm{~V}, \\ \mathrm{~V}_{\text {ref }}= \pm 10 \mathrm{~V} \\ \hline \end{array}$			± 400			± 200	nA	
		OUT2	$\begin{aligned} & \hline \mathrm{DB} 0-\mathrm{DB} 7 \text { at } \mathrm{V}_{\mathrm{DD}}, \quad \overline{\mathrm{WR}}, \overline{\mathrm{CS}} \text { at } 0 \mathrm{~V}, \\ & \mathrm{~V}_{\text {ref }}= \pm 10 \mathrm{~V} \end{aligned}$			± 400			± 200		
IDD	Supply current	Quiescent	DB0-DB7 at $\mathrm{V}_{\text {IH }}$ min or $\mathrm{V}_{\text {IL }}$ max			1			2	mA	
		Standby	DB0-DB7 at 0 V or $\mathrm{V}_{\text {DD }}$			500			500	$\mu \mathrm{A}$	
kSVS	Supply voltage sensitivity, Δ gain/ $\Delta V_{\text {DD }}$		$\Delta \mathrm{V}_{\mathrm{DD}}= \pm 10 \%$		0.01	0.16		0.005	0.04	\%FSR/\%	
C_{i}	Input capacitance, DB0-DB7, $\overline{\mathrm{WR}}, \overline{\mathrm{CS}}$		$\mathrm{V}_{\mathrm{I}}=0$			5			5	pF	
C_{0}	Output capacitance	OUT1	$\bar{W} \bar{C}$			30			30	pF	
		OUT2	V, WR, CS at 0			120			120		
		OUT1	DB0-DB7 at V_{DD}, $\overline{\mathrm{WR}}, \overline{\mathrm{CS}}$ at 0 V			120			120		
		OUT2				30			30		
	Reference input impedance (REF to GND)			5		20	5		20	k Ω	

operating characteristics over recommended operating free-air temperature range, $\mathrm{V}_{\text {ref }}= \pm 10 \mathrm{~V}$, OUT1 and OUT2 at GND (unless otherwise noted)

PARAMETER	TEST CONDITIONS	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$			UNIT
		MIN	TYP	MAX	MIN	TYP	MAX	
Linearity error				± 0.5			± 0.5	LSB
Gain error	See Note 1			± 2.5			± 2.5	LSB
Settling time (to 1/2 LSB)	See Note 2			100			100	ns
Propagation delay from digital input to 90% of final analog output current	See Note 2			80			80	ns
Feedthrough at OUT1 or OUT2	$\begin{aligned} & \text { Vref }= \pm 10 \mathrm{~V}(100-\mathrm{kHz} \text { sinewave }) \\ & \mathrm{WR} \text { and } \overline{\mathrm{CS}} \text { at } 0 \mathrm{~V}, \mathrm{DB} 0-\mathrm{DB7} \text { at } 0 \mathrm{~V} \end{aligned}$			0.5			0.5	\%FSR
Temperature coefficient of gain	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to MAX		± 0.004			± 0.001		\%FSR $/{ }^{\circ} \mathrm{C}$

NOTES: 1. Gain error is measured using the internal feedback resistor. Nominal full-scale range (FSR) $=\mathrm{V}_{\text {ref }}-1 \mathrm{LSB}$.
2. $O U T 1$ load $=100 \Omega, C_{e x t}=13 \mathrm{pF}, \overline{\mathrm{WR}}$ at $0 \mathrm{~V}, \overline{\mathrm{CS}}$ at $0 \mathrm{~V}, \mathrm{DB} 0-\mathrm{DB7}$ at 0 V to V_{DD} or V_{DD} to 0 V .

operating sequence

PRINCIPLES OF OPERATION

voltage-mode operation

It is possible to operate the current-multiplying DAC in these devices in a voltage mode. In the voltage mode, a fixed voltage is placed on the current output terminal. The analog output voltage is then available at the reference voltage terminal. Figure 1 is an example of a current-multiplying DAC, which is operated in voltage mode.

Figure 1. Voltage Mode Operation
The relationship between the fixed-input voltage and the analog-output voltage is given by the following equation:

$$
V_{O}=V_{I}(D / 256)
$$

where
$\mathrm{V}_{\mathrm{O}}=$ analog output voltage
$V_{1}=$ fixed input voltage
D = digital input code converted to decimal
In voltage-mode operation, these devices meet the following specification:

PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
Linearity error at REF	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \quad$ OUT1 $=2.5 \mathrm{~V}, \quad$ OUT2 at GND, $\quad \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1	LSB

TLC7524C, TLC7524E, TLC7524I 8-BIT MULTIPLYING DIGITAL-TO-ANALOG CONVERTERS

PRINCIPLES OF OPERATION

The TLC7524C, TLC7524E, and TLC7524I are 8-bit multiplying DACs consisting of an inverted R-2R ladder, analog switches, and data input latches. Binary-weighted currents are switched between the OUT1 and OUT2 bus lines, thus maintaining a constant current in each ladder leg independent of the switch state. The high-order bits are decoded. These decoded bits, through a modification in the R-2R ladder, control three equally-weighted current sources. Most applications only require the addition of an external operational amplifier and a voltage reference.

The equivalent circuit for all digital inputs low is seen in Figure 2. With all digital inputs low, the entire reference current, $I_{\text {ref, }}$, is switched to OUT2. The current source I/256 represents the constant current flowing through the termination resistor of the R-2R ladder, while the current source $\mathrm{I}_{\mathrm{Ikg}}$ represents leakage currents to the substrate. The capacitances appearing at OUT1 and OUT2 are dependent upon the digital input code. With all digital inputs high, the off-state switch capacitance (30 pF maximum) appears at OUT2 and the on-state switch capacitance (120 pF maximum) appears at OUT1. With all digital inputs low, the situation is reversed as shown in Figure 2. Analysis of the circuit for all digital inputs high is similar to Figure 2; however, in this case, Iref would be switched to OUT1.

The DAC on these devices interfaces to a microprocessor through the data bus and the $\overline{C S}$ and $\overline{W R}$ control signals. When $\overline{\mathrm{CS}}$ and $\overline{\mathrm{WR}}$ are both low, analog output on these devices responds to the data activity on the DB0-DB7 data bus inputs. In this mode, the input latches are transparent and input data directly affects the analog output. When either the $\overline{\mathrm{CS}}$ signal or $\overline{W R}$ signal goes high, the data on the DB0-DB7 inputs are latched until the $\overline{\mathrm{CS}}$ and $\overline{\mathrm{WR}}$ signals go low again. When $\overline{\mathrm{CS}}$ is high, the data inputs are disabled regardless of the state of the $\overline{W R}$ signal.

These devices are capable of performing 2-quadrant or full 4-quadrant multiplication. Circuit configurations for 2-quadrant or 4-quadrant multiplication are shown in Figure 3 and Figure 4. Table 1 and Table 2 summarize input coding for unipolar and bipolar operation respectively.

Figure 2. TLC7524 Equivalent Circuit With All Digital Inputs Low

PRINCIPLES OF OPERATION

NOTES: A. R_{A} and R_{B} used only if gain adjustment is required.
B. C phase compensation ($10-15 \mathrm{pF}$) is required when using high-speed amplifiers to prevent ringing or oscillation.

Figure 3. Unipolar Operation (2-Quadrant Multiplication)

NOTES: A. $\quad R_{A}$ and R_{B} used only if gain adjustment is required.
B. C phase compensation $(10-15 \mathrm{pF})$ is required when using high-speed amplifiers to prevent ringing or oscillation.

Figure 4. Bipolar Operation (4-Quadrant Operation)

Table 1. Unipolar Binary Code

DIGITAL INPUT (see Note 3)	ANALOG OUTPUT
MSB LSB	
111111111	$-\mathrm{V}_{\text {ref }}(255 / 256)$
10000001	$-\mathrm{V}_{\text {ref }}(129 / 256)$
10000000	$-\mathrm{V}_{\text {ref }}(128 / 256)=-\mathrm{V}_{\text {ref }} / 2$
01111111	$-\mathrm{V}_{\text {ref }}(127 / 256)$
00000001	$-\mathrm{V}_{\text {ref }}(1 / 256)$
00000000	0

NOTE 3: $\operatorname{LSB}=1 / 256\left(\mathrm{~V}_{\text {ref }}\right)$

Table 2. Bipolar (Offset Binary) Code

DIGITAL INPUT (see Note 4)	
MSB LSB	ANALOG OUTPUT
11111111	$\mathrm{~V}_{\text {ref }}(127 / 128)$
10000001	$\mathrm{~V}_{\text {ref }}(1 / 128)$
10000000	0
01111111	$-\mathrm{V}_{\text {ref }}(1 / 128)$
00000001	$-\mathrm{V}_{\text {ref }}(127 / 128)$
00000000	$-\mathrm{V}_{\text {ref }}$

NOTE 4: $\mathrm{LSB}=1 / 128\left(\mathrm{~V}_{\text {ref }}\right)$

PRINCIPLES OF OPERATION

microprocessor interfaces

Figure 5. TLC7524-Z-80A Interface

Figure 6. TLC7524-6800 Interface

PRINCIPLES OF OPERATION

microprocessor interfaces (continued)

Figure 7. TLC7524-8051 Interface

PACKAGING INFORMATION

Orderable Device	Status ${ }^{(1)}$	Package Type	Package Drawing	Pins	Package Qty	$\text { Eco Plan }{ }^{(2)}$	Lead/Ball Finish	MSL Peak Temp ${ }^{(3)}$
TLC7524CD	ACTIVE	SOIC	D	16	40	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
TLC7524CDR	ACTIVE	SOIC	D	16	2500	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
TLC7524CDRG4	ACTIVE	SOIC	D	16	2500	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
TLC7524CFN	ACTIVE	PLCC	FN	20	46	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \\ \hline \end{gathered}$	CU SN	Level-1-260C-UNLIM
TLC7524CFNR	ACTIVE	PLCC	FN	20	1000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \end{gathered}$	CU SN	Level-1-260C-UNLIM
TLC7524CFNRG3	ACTIVE	PLCC	FN	20	1000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no Sb/Br) } \\ \hline \end{gathered}$	CU SN	Level-1-260C-UNLIM
TLC7524CN	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N/ A for Pkg Type
TLC7524CNE4	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N/ A for Pkg Type
TLC7524CNS	ACTIVE	SO	NS	16	50	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
TLC7524CNSG4	ACTIVE	SO	NS	16	50	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
TLC7524CNSR	ACTIVE	So	NS	16	2000	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
TLC7524CPW	ACTIVE	TSSOP	PW	16	90	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no Sb/Br) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
TLC7524CPWG4	ACTIVE	TSSOP	PW	16	90	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
TLC7524CPWR	ACTIVE	TSSOP	PW	16	2000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
TLC7524CPWRG4	ACTIVE	TSSOP	PW	16	2000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
TLC7524ED	ACTIVE	SOIC	D	16	40	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
TLC7524EDG4	ACTIVE	SOIC	D	16	40	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
TLC7524EDR	ACTIVE	SOIC	D	16	2500	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
TLC7524EDRG4	ACTIVE	SOIC	D	16	2500	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
TLC7524EN	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N/ A for Pkg Type
TLC7524ENE4	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N/ A for Pkg Type
TLC7524ID	ACTIVE	SOIC	D	16	40	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
TLC7524IDG4	ACTIVE	SOIC	D	16	40	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
TLC7524IFN	ACTIVE	PLCC	FN	20	46	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \end{gathered}$	CU SN	Level-1-260C-UNLIM
TLC7524IFNR	ACTIVE	PLCC	FN	20	1000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU SN	Level-1-260C-UNLIM

PACKAGE OPTION ADDENDUM

| Orderable Device | Status ${ }^{(1)}$ | Package
 Type | Package
 Drawing | Pins Package
 Qty | Eco Plan ${ }^{(2)}$ | Lead/Ball Finish | MSL Peak Temp ${ }^{(3)}$ | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TLC7524IFNRG3 | ACTIVE | PLCC | FN | 20 | 1000 |
 no Sb/Br) | CU SN | Level-1-260C-UNLIM |
| TLC7524IN | ACTIVE | PDIP | N | 16 | 25 | Pb-Free
 (RoHS) | CU NIPDAU | N/A for Pkg Type |
| TLC7524INE4 | ACTIVE | PDIP | N | 16 | 25 | Pb-Free
 (RoHS) | CU NIPDAU | N/A for Pkg Type |
| TLC7524IPW | ACTIVE | TSSOP | PW | 16 | 90 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |
| TLC7524IPWR | ACTIVE | TSSOP | PW | 16 | 2000 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |
| TLC7524IPWRG4 | ACTIVE | TSSOP | PW | 16 | 2000 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS \& no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb -Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb -Free products are suitable for use in specified lead-free processes.
Pb -Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS \& no $\mathbf{S b} / \mathrm{Br}$): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
${ }^{(3)}$ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

N (R-PDIP-T**)
PLASTIC DUAL-IN-LINE PACKAGE
16 PINS SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C) Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).

D The 20 pin end lead shoulder width is a vendor option, either half or full width.

D (R-PDSO-G16)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed $0.006(0,15)$.
D. Falls within JEDEC MS-012 variation AC.

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-018

NS (R-PDSO-G**)
14-PINS SHOWN

DIM PINS **	14	16	20	24
A MAX	10,50	10,50	12,90	15,30
A MIN	9,90	9,90	12,30	14,70

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

PIMS $^{* *}$	$\mathbf{8}$	$\mathbf{1 4}$	$\mathbf{1 6}$	$\mathbf{2 0}$	$\mathbf{2 4}$	$\mathbf{2 8}$
A MAX	3,10	5,10	5,10	6,60	7,90	9,80
A MIN	2,90	4,90	4,90	6,40	7,70	9,60

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15 .
D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI .

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. Tl is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video \& Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

[^0]Copyright © 2006, Texas Instruments Incorporated

[^0]: Mailing Address: Texas Instruments
 Post Office Box 655303 Dallas, Texas 75265

