Mathematical induction

Mathematical induction

\square Mathematical induction is an extremely important proof technique.
\square Mathematical induction can be used to prove

- results about complexity of algorithms
- correctness of certain types of computer programs
- theorem about graphs and trees
\square Mathematical induction can be used only to prove results obtained in some other ways.

Mathematical induction

Assume $\mathrm{P}(\mathrm{n})$ is a propositional function.

Principle of mathematical induction:

To prove that $P(n)$ is true for all positive integers n we complete two steps

1. Basis step:

Verify $\mathrm{P}(1)$ is true.
2. Inductive step:

Show $P(k) \rightarrow P(k+1)$ is true for all positive integers k .

Mathematical induction

Basis step: $\mathrm{P}(1)$
Inductive step: $\forall k(P(k) \rightarrow P(k+1))$
Result: $\forall \mathrm{nP}(\mathrm{n}) \quad$ domain: positive integers

1. $P(1)$
2. $\forall k(P(k) \rightarrow P(k+1))$
3. $P(1) \rightarrow P(2)$
4. $P(2)$ by Modus ponens
5. $P(2) \rightarrow P(3)$
6. $P(3)$
by Modus ponens

Mathematical induction

$[P(1) \wedge \forall k(P(k) \rightarrow P(k+1))) \rightarrow \forall n P(n)]$

How to show $P(1)$ is true?

- $P(1): n$ is replaced by 1 in $P(n)$
- Then, show $P(1)$ is true.

How to show $\forall k(P(k) \rightarrow P(k+1))$?

- Direct proof can be used
- Assume $P(k)$ is true for some arbitrary k.
- Then, show $P(k+1)$ is true.

Example

Show that $1+2+\ldots+n=n(n+1) / 2$, where n is a positive integer.
Proof by induction:
\square First define $P(n)$
$P(n)$ is $1+2+\ldots+n=n(n+1) / 2$
\square Basis step: (Show $\mathrm{P}(1)$ is true.)
$1=1(2) / 2$
So, $\mathrm{P}(1)$ is true.

Example

Show that $1+2+\ldots+n=n(n+1) / 2$, where n is a positive integer.
Proof by induction:
$\square \quad$ Inductive step: (Show $\forall \mathrm{k}(\mathrm{P}(\mathrm{k}) \rightarrow \mathrm{P}(\mathrm{k}+1))$ is true.)

- Assume $P(k)$ is true.

$$
1+2+\ldots+k=k(k+1) / 2
$$

- Show $P(k+1)$ is true.

$$
P(k+1) \text { is } 1+2+\ldots+\mathrm{k}+(\mathrm{k}+1)=(\mathrm{k}+1)(\mathrm{k}+2) / 2
$$

$$
1+2+\ldots+k+(k+1)=k(k+1) / 2+(k+1)
$$

$$
=[k(k+1)+2(k+1)] / 2=\left[k^{2}+k+2 k+2\right] / 2
$$

$$
=\left[k^{2}+3 k+2\right] / 2=(k+1)(k+2) / 2
$$

We showed that $\mathrm{P}(\mathrm{k}+1)$ is true under assumption that $\mathrm{P}(\mathrm{k})$ is true. So, by mathematical induction $1+2+\ldots+n=n(n+1) / 2$.

Example

Show that $1+3+5 \ldots+(2 n-1)=n^{2}$, where n is a positive integer.
Proof by induction:
\square First define $P(n)$
$P(n)$ is $1+3+5 \ldots+(2 n-1)=n^{2}$
\square Basis step: (Show $P(1)$ is true.)
$2-1=1^{2}$
So, $\mathrm{P}(1)$ is true.

Example

Show that $1+3+5 \ldots+(2 n-1)=n^{2}$, where n is a positive integer.
Proof by induction:
$\square \quad$ Inductive step: (Show $\forall k(P(k) \rightarrow P(k+1))$ is true.)

- Assume $P(k)$ is true.

$$
1+3+5 \ldots+(2 k-1)=k^{2}
$$

- Show $P(k+1)$ is true.

$$
\begin{aligned}
& P(k+1) \text { is } 1+3+5 \ldots+(2 k-1)+(2(k+1)-1)=(k+1)^{2} \\
& \begin{aligned}
& 1+3+5 \ldots+(2 k-1)+(2(k+1)-1)=k^{2}+(2(k+1)-1) \\
&=k^{2}+2 k+1 \\
&=(k+1)^{2}
\end{aligned}
\end{aligned}
$$

We showed that $P(k+1)$ is true under assumption that $P(k)$ is true.
So, by mathematical induction $1+3+5 \ldots+(2 n-1)=n^{2}$.

Mathematical induction

Sometimes we need to show that $P(n)$ is true for $n=b, b+1, b+2, \ldots$, where b is an integer other than 1.

Mathematical induction:
\square Basis step:
Show $\mathrm{P}(\mathrm{b})$ is true.
\square Inductive step:

- Show $\forall \mathrm{k}(\mathrm{P}(\mathrm{k}) \rightarrow \mathrm{P}(\mathrm{k}+1))$ is true.

Example

Use mathematical induction to show that $1+2+2^{2}+\ldots+2^{n}=2^{n+1}-1$ for all nonnegative integers n .
Proof by induction:
\square First define $P(n)$
$P(n)$ is $2^{0}+2^{1}+2^{2}+\ldots+2^{n}=2^{n+1}-1$
\square Basis step: (Show $\mathrm{P}(0)$ is true.)

$$
2^{0}=2^{1}-1
$$

So, $\mathrm{P}(0)$ is true.

Example

Use mathematical induction to show that $1+2+2^{2}+\ldots+2^{n}=2^{n+1}-1$ for all nonnegative integers n .

Proof by induction:

$\square \quad$ Inductive step: (Show $\forall k(P(k) \rightarrow P(k+1))$ is true.)

- Assume $\mathrm{P}(\mathrm{k})$ is true.

$$
1+2+2^{2}+\ldots+2^{k}=2^{k+1}-1
$$

- Show $P(k+1)$ is true.

$$
\begin{aligned}
& P(k+1) \text { is } 1+2+2^{2}+\ldots+2^{k+1}=2^{k+2}-1 \\
& 1+2+2^{2}+\ldots+2^{k}+2^{k+1}=2^{k+1}-1+2^{k+1} \\
& \\
& =2 \cdot 2^{k+1}-1 \\
& \\
& =2^{k+2}-1
\end{aligned}
$$

We showed that $P(k+1)$ is true under assumption that $P(k)$ is true.
So, by mathematical induction $1+2+2^{2}+\ldots+2^{n}=2^{n+1}-1$.

Example

Use mathematical induction to prove the formula for the sum of a finite number of terms of a geometric
n progression.
$\sum_{k=0} a r^{k}=a+a r+a r^{2}+\ldots+a r^{n}=\left(a r^{n+1}-a\right) /(r-1)$ when $r \neq 1$
Proof by induction:
\square First define $P(n)$
$P(n)$ is $a+a r+a r^{2}+\ldots+a r^{n}=\left(a r^{n+1}-a\right) /(r-1)$.
\square Basis step: (Show $\mathrm{P}(0)$ is true.)
$a r^{0}=(a r-a) /(r-1)=a$
So, $P(0)$ is true.

Example

Use mathematical induction to prove the formula for the sum of a finite number of terms of a geometric
n progression.
$\sum_{k=0} a r^{k}=a+a r+a r^{2}+\ldots+a r^{n}=\left(a r^{n+1}-a\right) /(r-1)$ when $r \neq 1$
Proof by induction:
\square Inductive step: (Show $\forall \mathrm{k}(\mathrm{P}(\mathrm{k}) \rightarrow \mathrm{P}(\mathrm{k}+1))$ is true.)

- Assume $\mathrm{P}(\mathrm{k})$ is true.

$$
a+a r+a r^{2}+\ldots+a r^{k}=\left(a r^{k+1}-a\right) /(r-1)
$$

- Show $P(k+1)$ is true.

$$
P(k+1) \text { is } a+a r+a r^{2}+\ldots+a r^{k+1}=\left(a r^{k+2}-a\right) /(r-1)
$$

Example

Use mathematical induction to prove the formula for the sum of a n finite number of terms of a geometric progression.
$\sum_{k=0} a r^{k}=a+a r+a r^{2}+\ldots+a r^{n}=\left(a r^{n+1}-a\right) /(r-1)$ when $r \neq 1$
Proof by induction:

$$
\begin{aligned}
& a+a r+a r^{2}+\ldots+a r^{k}+a r^{k+1}=\left(a r^{k+1}-a\right) /(r-1)+a r^{k+1} \\
&=\left(a r^{k+1}-a\right) /(r-1)+a r^{k+1}(r-1) /(r-1) \\
&=\left(a r^{k+1}-a+a r^{k+2}-a r^{k+1}\right) /(r-1) \\
&=\left(a r^{k+2}-a\right) /(r-1)
\end{aligned}
$$

We showed that $\mathrm{P}(\mathrm{k}+1)$ is true under assumption that $\mathrm{P}(\mathrm{k})$ is true. So, by mathematical induction $a+a r+a r^{2}+\ldots+a r^{n}=\left(a r^{n+1}-a\right) /(r-1)$.

Example

Use mathematical induction to prove that $2^{n}<n$! for every positive integer n with $n \geq 4$.
Proof by induction:
\square First define $P(n)$
$P(n)$ is $2^{n}<n!$.
\square Basis step: (Show $P(4)$ is true.)
$2^{4}<1.2 .3 .4$
$16<24$
So, $\mathrm{P}(4)$ is true.

Example

Use mathematical induction to prove that $2^{n}<n!$ for every positive integer n with $n \geq 4$.

Proof by induction:

$\square \quad$ Inductive step: (Show $\forall k(P(k) \rightarrow P(k+1))$ is true.)

- Assume $P(k)$ is true.

$$
2^{k}<k!
$$

- Show $P(k+1)$ is true.

$$
P(k+1) \text { is } 2^{(k+1)}<(k+1)!
$$

$$
\begin{aligned}
2 \cdot 2^{k} & <2 \cdot k! \\
2^{(k+1)} & <2 \cdot k! \\
& <(k+1) \cdot k!=(k+1)!
\end{aligned}
$$

We showed that $P(k+1)$ is true under assumption that $P(k)$ is true.
So, by mathematical induction $2^{n}<n!$.

Example

Harmonic numbers $H_{j}, j=1,2,3, \ldots$ are defined by $H_{j}=$ $1+1 / 2+1 / 3+\ldots+1 / j$.
Use mathematical induction to show that $\mathrm{H}_{2 \mathrm{n}} \geq 1+\mathrm{n} / 2$, whenever n is a nonnegative integer.
Proof by induction:
\square First define $P(n)$
$P(n)$ is $H_{2 n} \geq 1+n / 2$.
\square Basis step: (Show $\mathrm{P}(0)$ is true.)
$H_{20} \geq 1+0 / 2$
$1 \geq 1$
So, $\mathrm{P}(0)$ is true.

Example

Use mathematical induction to show that $\mathrm{H}_{2 \mathrm{n}} \geq 1+\mathrm{n} / 2$, whenever n is a nonnegative integer.

Proof by induction:

$\square \quad$ Inductive step: (Show $\forall k(P(k) \rightarrow P(k+1))$ is true.)

- Assume $\mathrm{P}(\mathrm{k})$ is true.

$$
H_{2 k}=1+1 / 2+1 / 3+\ldots+1 / 2^{k} \geq 1+k / 2
$$

- Show $P(k+1)$ is true.

$$
P(k+1) \text { is } 1+1 / 2+1 / 3+\ldots+1 / 2^{k}+1 /\left(2^{k}+1\right)+\ldots+1 / 2^{k+1} \geq 1+(k+1) / 2
$$

$$
1+1 / 2+1 / 3+\ldots+1 / 2^{k}+1 /\left(2^{k}+1\right)+\ldots+1 / 2^{k+1} \geq 1+k / 2+1 /\left(2^{k}+1\right)+\ldots+1 / 2^{k+1}
$$

$$
\begin{aligned}
& \geq(1+k / 2)+2^{k} \cdot 1 / 2^{k+1} \\
& \geq(1+k / 2)+1 / 2=1+(k+1) / 2
\end{aligned}
$$

We showed that $P(k+1)$ is true under assumption that $P(k)$ is true.
So, by mathematical induction $\mathrm{H}_{2 \mathrm{n}} \geq 1+\mathrm{n} / 2$.

Example

Use mathematical induction to prove that $n^{3}-n$ is divisible by 3 whenever n is a positive integer.
Proof by induction:
\square First define $P(n)$ $P(n)$ is " $n 3-n$ is divisible by 3 ".
\square Basis step: (Show $\mathrm{P}(1)$ is true.) $1^{3}-1=0$ is divisible by 3 .
So, $\mathrm{P}(1)$ is true.

Example

Use mathematical induction to prove that $\mathrm{n}^{3}-\mathrm{n}$ is divisible by 3 whenever n is a positive integer.

Proof by induction:

$\square \quad$ Inductive step: (Show $\forall k(P(k) \rightarrow P(k+1))$ is true.)

- Assume $P(k)$ is true. ($k^{3}-k$ is divisible by 3)
- Show $P(k+1)$ is true. $\left(P(k+1)\right.$ is $(k+1)^{3}-(k+1)$ is divisible by 3 .)

$$
\begin{gathered}
(k+1)^{3}-(k+1)=\left(k^{3}+3 k^{2}+3 k+1\right)-(k+1) \\
=\left(k^{3}-k\right)+3\left(k^{2}+k\right)
\end{gathered}
$$

By inductive hypothesis $\left(k^{3}-k\right)$ is divisible by 3 and $3\left(k^{2}+k\right)$ is divisible
by 3 because it is 3 times an integer, so $P(k+1)$ is divisible by 3
We showed that $\mathrm{P}(\mathrm{k}+1)$ is true under assumption that $\mathrm{P}(\mathrm{k})$ is true.
So, by mathematical induction $n^{3}-n$ is divisible by 3 .

Example

Let S be a set with n elements, where n is nonnegative integer. Use mathematical induction to show that S has 2^{n} subsets.
Proof by induction:
\square First define $P(n)$
$P(n)$ is " A set with n elements has 2^{n} subsets".
\square Basis step: (Show $\mathrm{P}(0)$ is true.)
The empty set has $2^{0}=1$ subset, namely, itself.
So, $P(0)$ is true.

Example

Let S be a set with n elements, where n is nonnegative integer. Use mathematical induction to show that S has 2^{n} subsets.

Proof by induction:

$\square \quad$ Inductive step: (Show $\forall k(P(k) \rightarrow P(k+1))$ is true.)

- Assume $P(k)$ is true. (set S with k elements has 2^{k} subsets)
- Show $P(k+1)$ is true. (set $T(=S \cup\{a\})$ has 2^{k+1} subsets.)

For each subset X of S there are exactly two subsets of T, namely, X and $X \cup\{a\}$.
Since S has 2^{k} subsets, T has $2.2^{k}=2^{k+1}$ subsets.

We showed that $P(k+1)$ is true under assumption that $P(k)$ is true. So, by mathematical induction, any set with n elements, has 2^{n} subsets.

Example

Use mathematical induction to prove the following generalization of one of De Morgan's laws:
when $n \geq 2$.

$$
\bigcap_{J=1}^{n} A_{j}=\bigcup_{J=1}^{n} \bar{A}_{j}
$$

Proof by induction:
\square First define $P(n)$
$A_{1} \cap A_{2}=A_{1} \cup A_{2}$ By De Morgan's law, $\mathrm{P}(2)$ is true.

Example

Use mathematical induction to prove
Proof by induction $\bigcap_{\mathrm{J}=1}^{n} A_{j}=\bigcup_{J=1}^{n} \overline{A_{j}} \quad$ when $n \geq 2$.
\square Inductive step: (Show $\forall \mathrm{k}(\mathrm{P}(\mathrm{k}) \rightarrow \mathrm{P}(\mathrm{k}+1))$ is true.)

- Assume $P(k)$ is true.
- Show $P(k+1)$ is true. $\bigcap_{n}^{k} A_{j}=\bigcup_{J=1}^{k} \overline{A_{j}}$

$$
\bigcap_{J=1}^{\overbrace{j}^{k+1}} A_{j}=\bigcup_{J=1}^{k+1} A_{j}
$$

Example

Use mathematical induction to prove

We showed that $\mathrm{P}(\mathrm{k}+1)$ is true under assumption that $\mathrm{P}(\mathrm{k})$ is true.

Example

\square An odd number of people stand in a yard at mutually distinct distances.
\square At the same time each person throws a pie at their nearest neighbor, hitting this person.
Use mathematical induction to show that there is at least one person who is not hit by a pie.
Proof by induction:
\square First define $P(n)$
$P(n)$ is "there is one survivor whenever $2 n+1$ people stand in a yard at distinct mutual distances and each person throws a pie at their nearest neighbor".

Example

Proof by induction:

$\square \quad$ Basis step: (Show $P(1)$ is true.)

- There are $2(1)+1=3$ people $(A, B$ and $C)$ in the pie fight.
- Assume the closest pair is A and B.
- Since the distances between pairs of people are different, the distance between A and C and the distance between B and C are greater than the distance between A and B.
- So, A and B throw a pie at each other, while C throws a pie at either A or B, whichever is closer.
- So, C is not hit by a pie and $\mathrm{P}(1)$ is true.

Example

Proof by induction:

$\square \quad$ Inductive step: (Show $\forall k(P(k) \rightarrow P(k+1))$ is true.)

- Assume $P(k)$ is true.

There is at least one survivor whenever $2 k+1$ people stand in a yard at distinct mutual distances and each throws a pie at their nearest neighbor.

- Show $P(k+1)$ is true.
\square Assume there are $2(k+1)+1=2 k+3$ people in a yard with distinct distance between pairs of people.
\square Let A and B be the closest pair of people among $2 k+3$ people.
\square So, A and B throw pies at each other.

Example

Proof by induction:

\square Case 1:

- If someone else throws a pie at either A or B.
\square So, three pies are thrown at A and B.
\square So, at most $(2 k+3-3)=2 k$ pies are thrown at the remaining $2 k+1$ people.
\square This guarantees that at least one person is a survivor.
\square Case 2:
- If no one else throws a pie at either A or B.
- Besides A and B, there are $2 k+1$ people.
- Since the distances between pairs of people are all different, by inductive hypothesis, there is at least one survivor when $2 k+1$ people throws pie at each other.
So, by mathematical induction, $P(n)$ is true.

Recommended exercises

$3,6,7,11,13,16,21,27,29,33,35,39,41,43,45,49$,59,61,70

