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ASR Solution
• — Acoustic  Model (AM) : gives the 

probability of generating feature X when W is uttered. 

• — Language Model (LM) : gives the probability 
of W (word, phrase, sentence) is chosen to say. 
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How to postulate word sequence?
• First thought: enumerate all possible word sequence s one by one

– Expand into a large composite HMM
– Calculate the score and look for the best sequence
– Impossible even for small vocabulary task, e.g., di git string.

• Solution: build an overall recognition network acco mmodating all
possible word sequence � search for the best path

– Consider the task grammar and the language modeling  
constraints (FSG, n-gram, context-free)

– Build search network based on the task grammar
– Expand into a single huge composite HMM
– Given a speech feature sequence, use the Viterbi alg orithm to 

search for the best alignment path through the netw ork.
– The alignment path � the most likely word sequence (output)
– Each alignment path corresponds to one word sequenc e; but 

each word sequence has many possible alignment path s.
• Viterbi Approximation  � easy implementationSearch Space Representation

• Postulating word sequences is a typical search prob lem in CS.

• First of all, how to specify search space in ASR?
• Obviously, the search space depends on the underlyi ng grammar. 

• In ASR, language grammar is given in the following forms:
– Finite State Grammar (FSG):

Applications: voice dialing, digit string recogniti on, etc.

– N-gram: uni-gram, bi-gram, tri-gram, 4-gram
Applications: Dictation system, broadcast news tran scription, etc.

– Context-free Grammar (CFG) � recursive transition network

CFG is convenient to refer to high-level task-speci fic concepts, 
such as dates, names, inquiry patterns, etc.

Useful in speech understanding
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Search Space(1): FSG
• FSG itself is a search network; directly expand int o composite HMM 

based on lexicon and acoustic models.

(a) single digit
(b) single digit with start/end silence
(c) Digit string with start/end silence
(d) Digit string with optional silence

Voice Dialing 

Search Space(2): Unigram
• Word-loop network is sufficient for unigram LM.

Pr(w=a)

Pr(w=b)

Pr(w=been)

start end
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Search Space(3): Bigram
• Network for bi-gram is a bit complex; need more glu e nodes.

End

Search Space(4): Back-off Bi-gram
• If back-off bi-gram is used, glue nodes can be merg ed for back-off 

contexts to reduce links. (used in HTK)

is

is
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Search Space(5): Back-off Bigram LM with WFST
• No full context in back-off n-gram LM.

– Observed context: use n-gram condition probabilitie s.
– Unobserved context:  back-off to lower level n-1 gr am.

• WFST for back-off bi-gram LM:

W1 W2 Wk

backoff

<s>

</s>

W1:
P(W1)

Є:b(W1)

W1: P(w1|<s>)Є:b(W2) Є:b(wk)W2:
P(W2)

W2: p(w2|<s>
Wk

Wk:p(W2)Є:p(</s>)Search Space(6): Trigram
• Network for tri-gram becomes significantly complica ted.

• Network example for 2-word ( w1,w2) vocabulary 

ww11

ww22

Pr(w1)

Pr(w2)

Pr(w1|w1)

Pr(w2|w1)

Pr(w1|w2)

Pr(w2|w2)

ww11

ww22

ww11

ww22

Pr(w1|w1,w1)

Pr(w2|w1,w1)

Pr(w2|w1,w2)

Pr(w1|w2,w1)Pr(w1|w1,w2)

Pr(w2|w2,w1)

Pr(w1|w2,w2)

Pr(w2|w2,w2)

Start
End
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Search Space(7): Back-off Trigram
• Representation of a full trigram LM for large 

vocabulary is prohibitive. 

• It is possible to represent a back-off trigram LM e ven 
for very large vocabulary.

• WFST example …

Token Passing (1): simple implementation model for Viterbi decoding
• For a large or even medium 

size HMM, hard to maintain 
2-D trellis to implement the 
Viterbi decoding algorithm.

• Token passing paradigm: 
equivalent; easy to 
implement for large HMM’s.

• Token passing:
– Each HMM state holds a 

movable token which 
contains all info about 
its partial travel from a 
HMM start state up to the 
current state, e.g. partial 
log prob δ(.) and the 
partial path.

– Viterbi search becomes 
a token propagation 
process.
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Token Passing Algorithm
• Initialization: each HMM initial state holds a token  with value 0;
• Propagation:

– For each observation feature vector o t, t=1,2,…, T, 
• For each HMM state i do

(1) Pass a copy of the token in state i to all connecting states j by      
following HMM state transition; updating value of the new tokens
by aij+bj(ot);
(2) Discard the original tokens;  

End
• For each HMM state i do

if more than one tokens enter state i, 
keep the best one, discard the rest; 
End

End
• Termination:

– Examine all final states, the token with the best v alue passed the 
best path; its value � Viterbi score; recover path.Token Passing Example
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Token Passing: record boundaries

Techniques to Accelerate Search in ASR
• Beam search

– Prune unlikely candidates at the earliest stage.
• Tree-organized pronunciation lexicon

– For data sharing and better pruning strategy.
– How to structure search space for tree lexicon.
– Language Model Look-Ahead: how to apply LM earlier?

• Fast-match 
• One-pass search vs. Multi-pass search

– Integrated one-pass search: integrate all available  knowledge 
sources and explore the whole search space once; sl ow.

– Multi-pass search: use partial knowledge (e.g., sim pler models) 
to reduce search space; explore the reduced search space by 
more complicated models; fast.

• Dynamical network expansion
• Static decoding based on minimized WFST 
• Alternative outputs:

– N-Best list: how to generate?
– Word-graph: compact representation of more candidat es.
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Beam Search (I)
• Beam Search: every time frame, the best score in al l partial paths 

(tokens in token passing) is noted and any partial paths (tokens) 
whose score lies more than a beam-width below this best score is 
pruned from further consideration.

• Instead of searching  for the entire dark room, jus t follow the beam 
of your flashlight.

• Beam-width is a pre-set constant to control the deg ree of pruning.

• Beam search makes the prohibitive search problem fe asible.
• In beam search, search space never goes out of cont rol.

t

Best score
Best score

Best score
Best score

Best score

Best score
Best score

Beam Search (II)
• Beam search is THE most important pruning strategy to accelerate

search in speech recognition.
• Beam search is not admissible: it may miss the best  path; but this 

seldom happens in practice if the beam-width is set  properly.
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Beam Search (III)
• Acoustic pruning: retain only hypotheses with a sco re close to the 

best hypothesis for further consideration. 

– Regular beam search for in-HMM partial candidates.
– Acoustic beam-width Pa.

• Language model pruning (word ending pruning):
– The optimal path seems more stable at the word-endi ng points 

during the search especially after applying LM scor es.
– More aggressive pruning is possible at  word-end.

– Word-ending (LM) beam-width PLM. (PLM can be chosen to 
smaller than Pa to ward off more unlikely candidates )

• Histogram Pruning:
– Each time, instead of setting a beam width, survive  only the 

best N candidates.
– Sorting is prohibitive; usually implement by histog ram.

ASR Search Algorithms
• Dynamic search network expansion

– Tree lexicon

– Language model look-ahead

– Dynamic expansion 

• Static optimized network
– Static back-off LM network

– Expansion using WFST composition

– Optimization using WFST determinization and 
minimization 
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Tree Lexicon Organization
• Linear lexicon: each word in 

vocabulary is modeled separately:

– Essentially, it is a linear 
sequence of phonemes 
according to its 
pronunciation.

• Tree lexicon: all words in 
vocabulary can be organized into 
a prefix tree:

– Better data sharing; more 
effective pruning.

– Each leaf node represents one 
word. 

– Extremely important for large 
vocabulary cases.Tree Lexicon: problems

• Problems with a tree lexicon:
– The identity of the hypothesized word is unknown unt il 

reaching a leaf node.
• Language model (LM) scores can’t be applied until a t the 

end of tree � ineffective pruning in beam search
– Search space is hard to formulate unless making lot s of tree 

copies.
• Conceptual example:

– Three words  in vocabulary
– A network for only 2-word sentences

– For bi-gram: introducing merging nodes for previous  word
– For tri-gram: introducing merging nodes for previou s two 

words 
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Search Space for Tree Lexicon:
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Language Model Look-ahead
• In tree lexicon, can’t apply LM score due to unknow n id of 

current word.
• Better to incorporate LM knowledge as soon as possi ble to 

prune those unlikely candidates in grammar. 
• LM look-ahead: apply maximum LM scores of all words  which 

can be reached from the current node.

How to handle huge search space in large vocabulary
• Fast Match: phoneme look-ahead

– Look-ahead some feature vectors to determine a smal l set of 
most likely phoneme from the current time point.

• Multiple-pass search strategy:
– 1st pass: use simple language model (unigram, bi-gram) to 

reduce search space.
– 2nd pass: use more complicated model (such as tri-gram)  to 

search for the result only in the above reduced spa ce.

• Single-pass search strategy:
– Dynamic network expansion:

• No a whole static network is built beforehand (too big).
• Expand the net dynamically during the search proces s.
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Static Optimization Network using WFST
• Build a huge static search network from LM: Composi tion

– LM-based Grammar WFST  (G)
– Pronunciation Lexicon (L)
– Context-Dependency Transducer (C)
– Sub-word HMM  (H)

F  =  H F  =  H ○○ C C ○○ L L ○○ GG

• Compact the network using graph algorithms.
– Determinization
– Minimization

min( min( detdet (F) )(F) )WFST for Speech Recognition
comparable size
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Weighted Finite State Transducer (WFST) 
• WFST: weighted finite state transducer (or acceptor ):

WFST Operations
• Composition:   C = A ○ B

• Determinization:  D = det(C)
– deterministic automaton: every state has at most 

one out-going transition with any given label.

• Re-weighting (Weight pushing):  E = push(D)

• Minimization:  F = min(E)



Prepared by Prof. Hui Jiang 
(COSC6328)

3/13/2008

Dept. of CSE, York Univ. 17

WFST Operations: Examples
det

push

min

Multiple Outputs
• How to generate a short list of multiple outputs in stead of a single 

best?
– To apply more knowledge to pick up one.

• N-Best List:

– A list of top N best candidates

• Word graph:
– A compact representation of a large number of candi dates.

• How to generate N-best list or word graph from sear ch process?

– Standard Viterbi search can find the best one.
– Modify the Viterbi somewhat for this feature.
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N-Best List: example
True Transcription:   hard rockWord Graph (Lattice): example (1)
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Word Graph: example (2)

Other search strategies:
• Viterbi algorithm: time-synchronous breadth-first se arch

• Depth-first: A* search (or stack decoding)

– Time-asynchronous search
– Expend and evaluate partial hypothesis from a stack .

– Widely used in AI search. 
– Admissible: the best path is guaranteed as long as the 

heuristics are not over-estimated.
– Not popular anymore in speech recognition. 

– NO TIME to cover.


