

General Info of the project (1)

- Use HTK to build an ASR system from training data.
- Do experiments to improve your system.
- Evaluate your systems on test data and report the best.
- Requirements:
 - Use mixture Gaussian CDHMM.
 - Use mono-phone and state-tied tri-phone models
 - Can't use any test data in HMM training.
- Progressive model training procedure:
 - Simple models \rightarrow complex models
 - Single Gaussian \rightarrow more mixtures
 - Mono-phone \rightarrow tri-phone

General Info of the project (3)

- The expected strategy:
 - 1) Properly initialize HMM's from scratch.
 - 2) Evaluate HMM's on test set.
 - 3) Think about ideas to improve models.
 - 4) Retrain/update/enhance HMM's.
 - 5) Evaluate the enhanced HMM's again.
 - 6) Goto 3) to repeat until find your best HMM setting.
- You need to hand in the following electronic files:
 - A report (max 8 pages), report_X.xxx, to describe all conducted experiments; why you did them; your methods to improve the system; your best system setting and the best performance you achieved; others.
 - A training script, *train_X.script*, to get your best HMMs from scratch.
 - A test script, *test_X.script,* to evaluate your HMMs on test data.
 - A readme_X.txt file to explain how to run your scripts.

LM Training (3): ML estimation • Maximum Likelihood (ML) estimation of multinomial distribution is easy to derive. • The ML estimate of n-gram LM is: $arg max_{p(w|h)} \sum_{w \in V} N(hw) \cdot \ln p(w \mid h) = arg max_{p_{hw}} \sum_{w \in V} N(hw) \cdot \ln p_{hw}$ subject to constrants $\sum_{w \in V} p_{hw} = 1$ for all h. $\Rightarrow p_{hw}^{(ML)} = \frac{N(hw)}{\sum_{w \in V}} = \frac{N(hw)}{N(h)}$

LM Training (3): MAP estimation

- The natural conjugate prior of multinomial distribution is the Dirichlet distribution.
- Choose Dirichlet distribution as priors

$$p(\{p_{hw}\}) \propto \prod_{w \in V} [p_{hw}]^{K(hw)}$$

- where { *K(hw)*} are hyper-parameters to specify the prior.
- Derive posterior p.d.f. from Bayesian learning:

$$p(\{p_{hw}\}|S_{h}) \propto \prod_{w \in V} [p_{hw}]^{K(hw)+N(hw)}$$

• Maximization of posteriori p.d.f. \rightarrow the MAP estimate

$$p_{hw}^{(MAP)} = \frac{N(hw) + K(hw)}{\sum_{w \in V} [N(hw) + K(hw)]}$$

• MAP estimates of n-gram LM can be used for smoothing.

Back-off Scheme(1): Good-Turing Discounting (I)

- Good-Turing discounting: discount n-gram counts directly.
- r: frequency (occurring r times)
- *Nr*: total number of distinct n-grams occurring exactly *r* times.
- Good-Turing discounting rule:

$$r^* = (r+1) \frac{E(N_{r+1})}{E(N_r)} \quad (< r)$$

• Total probability mass reserved for unseen n-grams:

$$\lambda(h) = \frac{E(N_1)}{N(h)}$$

• How to calculate expectation E(Nr)?

	N
1	INr
0	212,522,973
1	138,741
2	25,413
3	10,531
4	5,997
5	3,565
6	2,486
7	1,754
8	1,342
1366	1
1917	1
2233	1
2507	1

Back-off Scheme(1): Good-Turing Discounting (II)

- How to get *E*(*N*_{*r*})?
 - Directly use Nr to approximate the expectation.
 - Only adjust low frequency words (to say, r<=10)
 - No need to adjust high frequency words (r>10)
 - Fit all observed (r,Nr) to a function S, then use the smoothed value S(r) as the expectation.
 - Usually use hyperbolic function

 $E(N_r) = S(r) = a \cdot b^r (\text{with } b < -1)$

- Good-Turing estimate is *r*/N(h)*.
- Re-normalize to a proper prob dist

r	r*	Nr
0	0.0007	212,522,973
1	0.3663	138,741
2	1.228	25,413
3	2.122	10,531
4	3.058	5,997
5	4.015	3,565
6	4.984	2,486
7	5.96	1,754
8	6.942	1,342
1366	1365	1
1917	1916	1
2233	2232	1
2507	2506	1

