COSC6328.3 Speech & Language Processing

No.2

Math Background

Prof. Hui Jiang

Department of Computer Science

York University

COSC6328 Course Outline: "Speech & Language Processing"

- Part I: Introduction (2 weeks)
 - Overview of speech and language technologies
 - Basi¢ Knowledge of speech and spoken language
 - Math foundations: review
- Part II: Basic theory of pattern classification/verification (4 weeks)
 - Bayesian decision rule
 - Model estimation methods
 - Some statistical models: Gaussian, GMM, Markov Chain, HMM
- Part III: case studies (4 weeks)
 - Automatic speech recognition
 - Spoken language processing
- Part IV: Advanced topics YOUR PARTICIPATION !! (2 weeks)
 - Choose a recently published article in speech and language area
 - Self-study and oral presentation in class

Pattern Classification and Pattern classification

- Many applications fall into the categories: pattern classification or pattern verification.
- Pattern classification: based on some observed information of an input, classify it into one of the finite number of classes.
 - Speech recognition
 - Speaker identification (recognition)
 - Text categorization
 - Language understanding
 - etc.
- Pattern Verification:
 - Speaker verification
 - Audio/video segmentation
 - etc.

Major Paradigm Shift: Rule/Knowledge-Based → Data-Driven

- Rule/Knowledge-based method:
 - Experts analyze some samples to gain knowledge.
 - Knowledge representation: rule-based.
 - Inference based on rules: parsing, etc.
- Data-driven statistical approach:
 - Collect a mass amount of representative data.
 - Manually select a statistical model for the underlying data.
 - Model estimation from the data set automatically.
 - Make decision based on the estimated models.
- Recently, data-driven statistical approach has achieved great successes in many many real-world applications:
 - Automatic speech recognition (ASR)
 - Statistical machine translation
 - Computational linguistics

Probability & Statistics: review

- Probability
- Random variables/vectors: discrete vs. continuous
- Probability distribution of random variables: pmf, pdf, cdf
- Mean, variance, moments
- Conditional probability & Bayes' theorem: independence
- Joint Probability distribution: marginal distribution
- Some useful distributions:
 - Multinomial, Gaussian, Uniform, Dirichlet, Gamma, etc.
- Information Theory: entropy, mutual information, information channel, KL divergence, etc.
- CART (Classification and Regression Tree)
- Function Optimization
- Linear Algebra: matrix manipulation
- Others

Probability Definition

- Sample Space: Ω
 - collection of all possible observed outcomes
- An Event A: $A \subseteq \Omega$ including null event ϕ
- σ -field: set of all possible events $A \in F_{o}$
- Probability Function (Measurable) $P: F_{\Omega} \rightarrow [0,1]$
 - Meet three axioms:
 - **1.** $P(\phi) = 0$ $P(\Omega) = 1$
 - 2. If $A \subseteq B$ then $P(A) \le P(B)$
 - 3. If $A \cap B = \emptyset$ then $P(A \cup B) = P(A) + P(B)$

Some Examples

- Example I: experiment to toss a 6-face dice once:
 - Sample space: {1,2,3,4,5,6}
 - Events: X={even number}, Y={odd number}, Z={larger than 3}.
 - σ -field: set of all possible events
 - Probability Function (Measurable) → relative frequency
- Example II:
 - Sample Space:

 $\Omega_c = \{x: x \text{ is the height of a person on earth}\}$

- - A={x: x>200cm}
 - B={x: 120cm<x<130cm}
- σ -field: set of all possible events
- **Probability Function (Measurable)** $P: F_{\Omega} \rightarrow [0,1]$
- measuring A, B:

 $Pr(A) = \frac{\text{# of persons whose height over 200cm}}{\text{Pr}(A)}$ total # of persons in the earth

Conditional Events

- **Prior Probability**
 - probability of an event before considering any additional knowledge or observing any other events (or samples): P(A)
- Joint probability of multiple events: probability of several events occurring concurrently, e.g., $P(A \cap B)$.
- Conditional Probability: probability of one event (A) after another event (B) has occurred, e.g., P(A|B).
 - updated probability of an event given some knowledge about another event. Definition is:

$$P(A \mid B) = P(A \cap B)/P(B)$$

Prove the Addition Rule:
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

From Multiplication Rule, show Chain Rule:

$$P(A_1 \cap A_2 \cap ... \cap A_n) = P(A_1)P(A_2 \mid A_1) \cdots P(A_n \mid \bigcap_{i=1}^{n-1} A_i)$$

Bayes' Theorem

- Swapping dependency between events
 - calculate P(B|A) in terms of P(A|B) that is available and more relevant in some cases

$$P(B \mid A) = \frac{P(B \cap A)}{P(A)} = \frac{P(A \mid B)P(B)}{P(A)}$$

• In some cases, not important to compute P(A)

$$B^* = \underset{B}{\operatorname{arg max}} P(B \mid A) = \underset{B}{\operatorname{arg max}} \frac{P(A \mid B)P(B)}{P(A)} = \underset{B}{\operatorname{arg max}} P(A \mid B)P(B)$$

- Another Form of Bayes' Theorem
 - If a set B partitions A, i.e.

$$A = \bigcup_{i=1}^{n} B_i \quad B_i \cap B_k = \emptyset$$

$$P(B_j | A) = \frac{P(A | B_j)P(B_j)}{P(A)} = \frac{P(A | B_j)P(B_j)}{\sum_{i=1}^{n} P(B_i)}$$

Random Variable

- A random variable (*R.V.*) is a variable which could take various values with different probabilities.
- A R.V. is said to be discrete if its set of possible values is a discrete set. The *probability mass function (p.m.f.)* is defined:

$$f(x) = \Pr(X = x)$$
 for $x = x_1, x_2, \dots$ $\sum f(x_i) = 1$

A univariate discrete R.V., one p.m.f. example:

x	1	2	3	4
f(x)	0.4	0.3	0.2	0.1

• A R.V. is said to be continuous if its set of possible values is an entire interval of numbers. Each continuous R.V. has a distribution function for a R.V. X, its cumulative distribution function (c.d.f.) is defined as:

$$F(t) = \Pr(X \le t) \qquad (-\infty < t < \infty)$$
$$\lim_{t \to \infty} F(t) = 0 \qquad \lim_{t \to \infty} F(t) = 1$$

• A probability density function (p.d.f.) of a continuous R.V. is a function that for any two number a, b (a<b),

$$\Pr(a \le X = b) = \int_a^b f(x) dx \qquad F(t) = \int_a^t f(x) dx \qquad \int_a^{+\infty} f(x) dx = 1$$

Random Variable

Expectation of random variables and its functions

$$E(X) = \int_{-\infty}^{\infty} x \cdot f(x) dx \qquad \text{or} \qquad \sum_{i} x_{i} \cdot p(x_{i})$$

$$E(q(X)) = \int_{-\infty}^{\infty} q(x) \cdot f(x) dx \quad \text{or} \quad \sum_{i} q(x_{i}) \cdot p(x_{i})$$

Mean and Variance

Mean(X) = E(X)
$$Var(X) = E([X - E(X)]^2)$$

r-th moment (*r*=1,2,3,4,...)

$$E(X^r) = \int_{-\infty}^{\infty} x^r \cdot f(x) dx$$
 or $\sum_{i} x_i^r \cdot p(x_i)$

Random vector is a vector whose elements are all random variables.

Joint and Marginal Distribution

- Joint Event and Product Space of two (or more) R.V.'s $\Omega \times \Omega$
 - e.g. E=(A,B)=(200cm<height, live in Canada)
- Joint p.m.f of two discrete random variables X, Y:

_ X \ Y	0	1	2
Τ	0.03	0.24	0.17
F	0.23	0.11	0.22

Joint p.d.f. (c.d.f.) of two continuous random variables X, Y: p(x, y) = Pr(X = x, Y = y)

$$\Pr(a \le x \le b, c \le y \le d) = \int_a^b \int_c^d f(x, y) dy dx$$

Marginal p.m.f. and p.d.f.:

$$p(x) = \sum_{y} p(x, y)$$
 $f(x) = \int f(x, y) dy$

Conditional Distribution of RVs

- Conditional p.m.f. or p.d.f. for discrete or continuous R.V.'s $p(x \mid y) = p(x, y) / p(y)$
- **Conditional Expectation**

$$E(q(X)|Y = y_0) = \int_{-\infty}^{\infty} q(x)f(x|y_0)dx$$
 or $\sum_{i} q(x_i)p(x_i|y_0)$

Independence:

$$f(x, y) = f(x)f(y) \quad f(x \mid y) = f(x)$$

Covariance between two R.V.'s

$$Cov(X,Y) = E([X - E(X)][Y - E(Y)])$$

= $\iint_{Y} (x - E(X))(y - E(Y)) \cdot f(x, y) dx dy$

Uncorrelated R.V.'s:

$$Cov(X, Y) = E([X - E(X)][Y - E(Y)]) = 0$$

Some Useful Distributions (I)

- Binomial Distribution: B(R=r; n, p)
 - probability of r successes in n trials with a success rate p

$$B(r; n, p) = \frac{n!}{r!(n-r)!} p^{r} (1-p)^{n-r} \quad \text{where} \quad 0 \le r \le n$$

For binomial distribution:

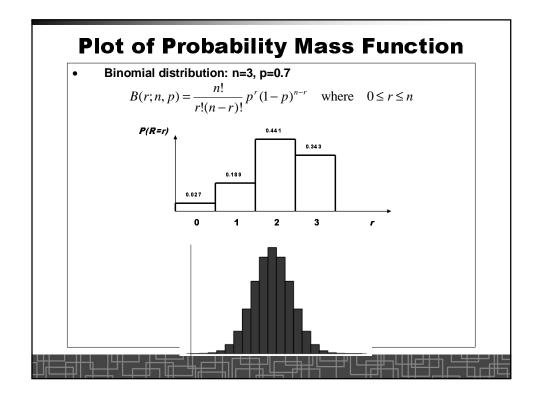
$$\sum_{r=0}^{n} B(r; n, p) = 1 \qquad E_{B}(R) = \sum_{r=0}^{n} rB(r; n, p) = np \quad Var_{B}(R) = np(1-p)$$

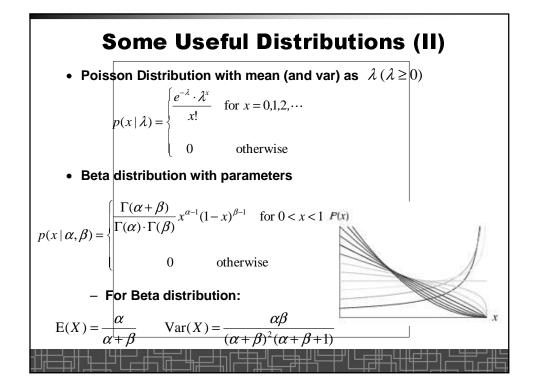
Multinomial Distribution

$$M(r_1,...,r_m;n,p_1,...,p_m) = \frac{n!}{r_1!\cdots r_m!} \prod_{i=1}^m p_i^{r_i} \quad 0 \le r_i \quad \sum_{i=1}^m r_i = n$$

For multinomial distribution

$$E(R_i) = np_i \quad Var(R_i) = np_i(1 - p_i) \quad Cov(R_i, R_j) = -np_i p_j$$





Some Useful Distributions (III)

Dirichlet distribution: a random vector (X1,...,Xk) has a Dirichlet distribution with parameter vector (α1,..., αk) (for all αk>0) if

$$p(X_1, \dots, X_k \mid \alpha_1, \dots, \alpha_k) = \frac{\Gamma(\alpha_1 + \dots + \alpha_k)}{\Gamma(\alpha_1) \dots \Gamma(\alpha_k)} x_1^{\alpha_1 - 1} \dots x_k^{\alpha_k - 1}$$
for all $x_i > 0$ $(i = 1, 2, \dots, k)$ and $\sum_{i=1}^k x_i = 1$.

- For Dirichlet distribution:

Denote
$$\alpha_0 = \sum_{i=1}^k \alpha_i$$

$$E(X_i) = \frac{\alpha_i}{\alpha_0} \quad Var(X_i) = \frac{\alpha_i(\alpha_0 - \alpha_i)}{\alpha_0^2(\alpha_0 + 1)}$$

$$Cov(X_i, X_j) = -\frac{\alpha_i \alpha_j}{\alpha_0^2(\alpha_0 + 1)}$$

Some Useful Distributions (IV)

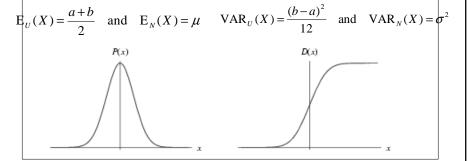
• Uniform Distribution: *U(X=x; a, b)*

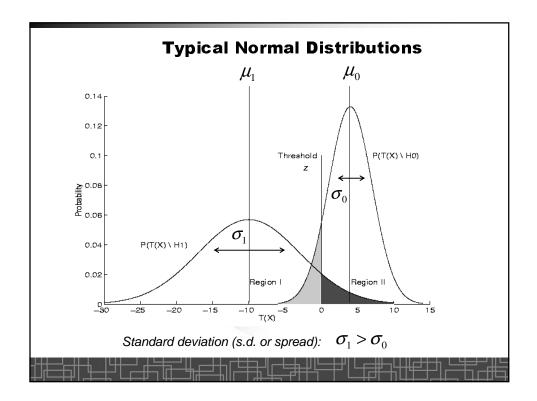
$$U(x;a,b) = \begin{cases} 1/(b-a) & a \le x \le b \\ 0 & \text{otherwise} \end{cases} \text{ with } a < b$$

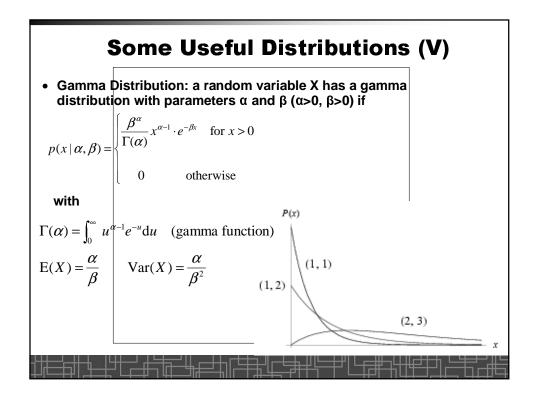
• Normal (or Gaussian) Distribution: Bell Curve

$$N(x; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\mu)^2/2\sigma^2} - \infty < x < \infty \quad \sigma > 0$$

Show







Some Useful Distributions (VI)

2-D Uniform Distribution:

$$U(x, y; a, b, c, d) = \begin{cases} 1/(b-a)(d-c) & a \le x \le b, c \le y \le d \\ 0 & \text{otherwise} \end{cases} \text{ with } a < b, c < d$$

• Multivariate Normal Distribution

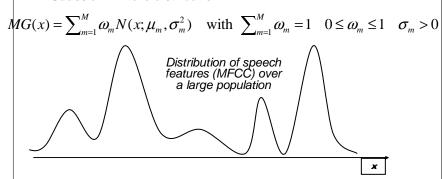
$$N(\mathbf{x}; \boldsymbol{\mu}, \mathbf{C}) = \frac{1}{\sqrt{(2\pi)^n \mid \mathbf{C} \mid}} e^{-(\mathbf{x} \cdot \boldsymbol{\mu})^t \mathbf{C}^{-1}(\mathbf{x} \cdot \boldsymbol{\mu})/2} \quad -\infty < \mathbf{x} < \infty$$

- Show $E_N(\mathbf{X}) = \boldsymbol{\mu}$ and $VAR_N(\mathbf{X}) = \mathbf{C}$
- Can you write down the 2-D distribution form, compute Cov(X, Y), and derive the marginal and conditional densities, f(y) and f(x|y)?

$$\mathbf{x} = \begin{bmatrix} x \\ y \end{bmatrix} \qquad \qquad \mathbf{\mu} = \begin{bmatrix} \mu_x \\ \mu_y \end{bmatrix} \qquad \qquad \mathbf{C} = \begin{bmatrix} \sigma_x^2 & r\sigma_x\sigma_y \\ r\sigma_x\sigma_y & \sigma_y^2 \end{bmatrix}$$

Gaussian Mixture Distribution

• Gaussian Mixture distribution:



- In theory, MG(x) matches any probabilistic density up to second order statistics (mean and variance)
- Approximating multi-modal densities which is more likely to describe real-world data
- Multinomial Mixture Model for discrete data.

Parametric Distributions

- Parametric Distribution
 - r.v. described by a small number of parameters in pdf/pmf
 - e.g. Gaussian (2), Binomial (2), 2-d uniform (4)
 - many useful and known parametric distributions
 - Probability distribution of independently and identically distributed (i.i.d.) samples from such distributions can be easily derived.
- Non-Parametric Distribution
 - usually described by the data samples themselves
 - Sample distribution & histogram (pmf / bar chart): counting samples in equally-sized bins and plot them
- Statistic: Function of random samples
 - sample mean and variance, maximum/minimum, etc.
- Sufficient Statistics
 - minimum number of statistics to remember all samples
 - for Gaussian r.v. need count, sample mean and variance
 - for some r.v.'s, no sufficient statistics, need all samples

Function of Random Variables

- Function of r.v.'s is also a r.v.
 - e.g. X=U+V+W, if we know f(u,v,w) how about f(x)?
 - e.g. sum of dots on two dices
- Problem easier for known and popular r.v.'s
 - e.g. if U and V are independent Gaussian, so is X=U+V

$$N(.|\mu_1,\sigma_1^2)+N(.|\mu_2,\sigma_2^2)=N(.|\mu_1+\mu_2,\sigma_1^2+\sigma_2^2)$$

- e.g. if W and Z are independent uniform, is Y=W+Z uniform?
- Sample mean of n independent samples of Gaussian r.v.'s is also Gaussian, show that:

$$E(\overline{X}) = \mu \quad Var(\overline{X}) = \sigma^2 / n$$

- Average of two independent samples of uniform r.v.'s form a triangular shape p.d.f.
- How about n samples and n is very large?
 - Law of large numbers asymptotic Normal p.d.f. !!

Transformation of Random Variables

- Given random vectors $\vec{X} = (X_1, \dots X_n)$ and $\vec{Y} = (Y_1, \dots, Y_n)$
- We know $Y_1 = g_1(\vec{X}), \dots, Y_n = g_n(\vec{X})$
- Given p.d.f. of \vec{X} , $p_X(\vec{X}) = p_X(X_1, \dots X_n)$, how to derive p.d.f. for \vec{Y} ?
- If the transformation is one-to-one mapping, we can derive an inverse transformation as: $X_1 = h_1(\vec{Y}), \dots, X_n = h_n(\vec{Y})$
- We define the Jacobian matrix as:

$$J(\vec{Y}) = \begin{bmatrix} \frac{\partial h_1}{\partial Y_1} & \cdots & \frac{\partial h_1}{\partial Y_n} \\ \vdots & \vdots & \vdots \\ \frac{\partial h_n}{\partial Y_1} & \cdots & \frac{\partial h_n}{\partial Y_n} \end{bmatrix}$$

We have

$$p_Y(\vec{Y}) = p_X(h_1(\vec{Y}), \dots h_n(\vec{Y})) \cdot \left| J(\vec{Y}) \right|$$

Probability Theory Recap

- Probability Theory Tools
 - fuzzy description of phenomena
 - statistical modeling of data for inference
- Statistical Inference Problems
 - Classification: choose one of the stochastic sources
 - Decision and Hypothesis Testing: comparing two stochastic assumptions and decide on how to accept one of them
 - Estimation: given random samples from an assumed distribution, find "good" guess for the parameters
 - Prediction: from past samples, predict next set of samples
 - Regression (Modeling): fit a model to a given set of samples
- Parametric vs. Non-parametric Distributions
 - parsimonious or extensive description (model vs. data)
 - Sampling, data storage and sufficient statistics
- Real-World Data vs. Ideal Distributions
 - "there is no perfect goodness-of-fit"
 - ideal distributions are used for approximation
 - sum of random variables and Law of Large Numbers

Information Theory & Shannon

- Claude E. Shannon (1916-2001, from Bell Labs to MIT): Father of Information Theory, Modern Communication Theory ...
- **Information of an event:** $I(A) = \log_2 1/\Pr(A) = -\log_2 \Pr(A)$
- Entropy (Self-Information) in bit, amount of info in a r.v.

$$H(X) = -\sum_{x \in X} p(x) \log_2 p(x) = \mathrm{E}[\log_2 \frac{1}{p(X)}] \quad 0 \log_2 0 = 0$$
 Entropy represents average amount of information in a r.v., in other

- words, the average uncertainty related to a r.v.
- **Contributions of Shannon:**
 - Study of English Cryptography Theory, Twenty Questions game, Binary Tree and Entropy, etc.
 - Concept of Code Digital Communication, Switching and Digital Computation (optimal Boolean function realization with digital relays and switches)
 - Channel Capacity Source and Channel Encoding, Error-Free Transmission over Noisy Channel, etc.
 - C. E. Shannon, "A Mathematical Theory of Communication", Parts 1 & 2, Bell System Technical Journal, 1948.
 - He should have won a Nobel Prize for his contributions (1948 is also the year of the discovery of transistor at Bell Labs)

Joint and Conditional Entropy

Joint entropy: average uncertainty about two r.v.'s; average amount of information provided by two r.v.'s.

$$H(X,Y) = E[\log_2 \frac{1}{p(X,Y)}] = -\sum_{x \in X} \sum_{y \in Y} p(x,y) \log_2 p(x,y)$$

Conditional entropy: average amount of information (uncertainty) of Y after X is known.

$$H(Y \mid X) = -\sum_{x \in X} p(x)H(Y \mid X = x) = \sum_{x \in X} p(x)[-\sum_{y \in Y} p(y \mid x)\log_2 p(y \mid x)]$$
$$= -\sum_{x \in X} \sum_{y \in Y} p(x, y)\log_2 p(y \mid x)$$

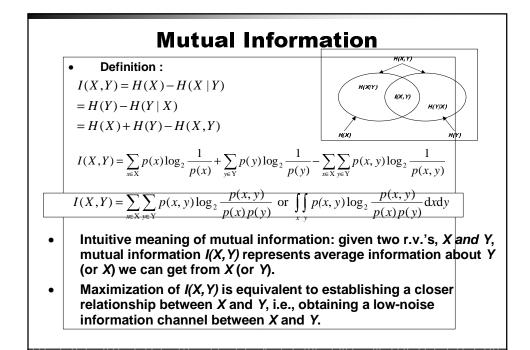
Chain Rule for Entropy:

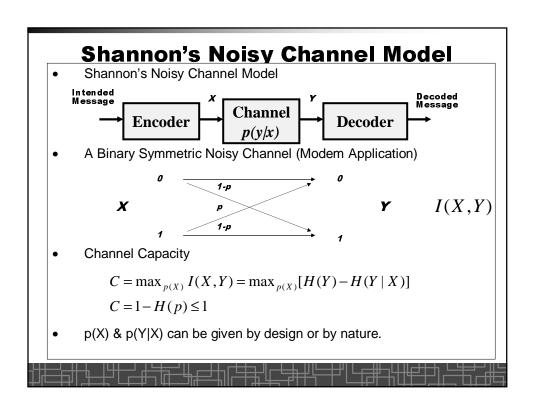
$$H(X,Y) = H(X) + H(Y | X) = H(Y) + H(X | Y)$$

$$H(X_1, X_2,..., X_n) = H(X_1) + H(X_2 | X_1) + \cdots + H(X_n | X_1,..., X_{n-1})$$

Independence:

$$H(X,Y) = H(X) + H(Y)$$
 or $H(Y | X) = H(Y)$



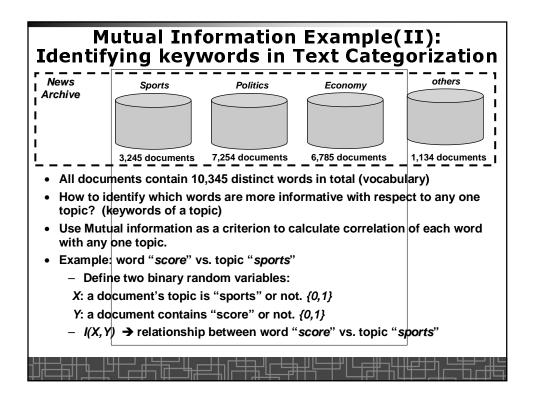


	• / • (
p(X, Y)	0	1
0	0.45	0.05
1	0.05	0.45

$$I(X,Y) = \sum_{x \in \{0,1\}} \sum_{y \in \{0,1\}} p(x,y) \log_2 \frac{p(x,y)}{p(x)p(y)}$$
$$= 2 \cdot 0.45 \cdot \log_2 \frac{0.45}{0.5 \cdot 0.5} + 2 \cdot 0.05 \cdot \log_2 \frac{0.05}{0.5 \cdot 0.5} = 0.533$$

– Cas	e III: p=0.4 (st	rong noise)
p(X, Y)	0	1
0	0.3	0.2

$$I(X,Y) = \sum_{x \in \{0,1\}} \sum_{y \in \{0,1\}} p(x,y) \log_2 \frac{p(x,y)}{p(x)p(y)}$$
$$= 2 \cdot 0.3 \cdot \log_2 \frac{0.3}{0.5 \cdot 0.5} + 2 \cdot 0.2$$
$$\log_2 \frac{0.2}{0.5 \cdot 0.5} = 0.03$$



Identifying keywords in Text Categorization

Count documents in archive to calculate p(X, Y)

$$p(X = 1, Y = 1) = \frac{\text{# of docs with topic "sports" and contains "score"}}{\text{total # of docs in the archive}}$$

$$p(X = 1, Y = 0) = \frac{\text{# of docs with topic "sports" and don't contains "score"}}{\text{total # of docs in the archive}}$$

Y→"score"

	p(X,Y)	0	1	
X	0	0.802	0.022	0.824
	1	0.106	0.070	0.176
		0.908	0.092	•

 $I(X,Y) = \sum_{x \in \{0,1\}} \sum_{y \in \{0,1\}} p(x,y) \log_2 \frac{p(x,y)}{p(x)p(y)}$ = 0.126

• How about word "what" - topic "sports"

Y→"what"

	p(X, Y)	0	1
(0	0.709	0.115
	1	0.153	0.023
,		0.862	0.138

$$I(X,Y) = \sum_{x \in \{0,1\}} \sum_{y \in \{0,1\}} p(x,y) \log_2 \frac{p(x,y)}{p(x)p(y)}$$

= 0.000070

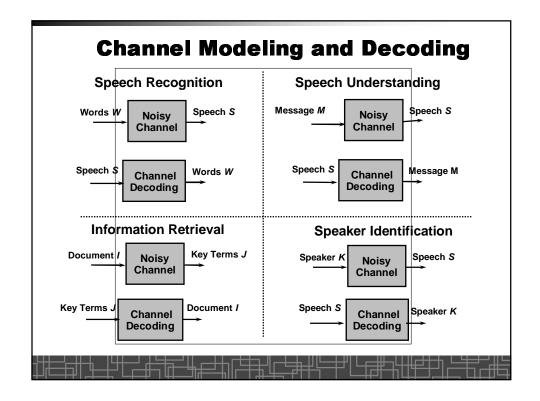
"score" is a keyword for the topic "sports"; "what" is not;

Identifying keywords in Text Categorization

- For topic Ti, choose its keywords (most relevant)
 - For each word W_i in vocabulary, calculate I(W_i,T_i);
 - Sort all words based on I(W_i,T_i);
 - Keywords w.r.t. topic *Ti*: top N words in the sorted list.
- Keywords for the whole text categorization task:
 - For each word W_i in vocabulary, calculate

$$I(W_j) = \frac{1}{|T|} \sum_{i=1}^{|T|} I(W_j, T_i) \text{ or } I'(W_j) = \max_{i} I(W_j, T_i)$$

- Sort all words based on I(W_i) or I'(W_i).
- Top *M* words in the sorted list.



• Bayes' Theorem for Channel Decoding $I^* = \arg\max_{I} P(I \mid \hat{O}) = \arg\max_{I} \frac{P(\hat{O} \mid I)P(I)}{P(\hat{O})} = \arg\max_{I} P(\hat{O} \mid I)P(I)$				
				Application
Speech	Word	Speech	Language	Acoustic
Recognition	Sequence	Features	Model (LM)	Model
Character	Actual	Letter	Letter	OCR Error
Recognition	Letters	images	LM	Model
Machine Translation	Source Sentence	Target Sentence	Source LM	Translation (Alignment Model
Text	Semantic	Word	Concept LM	Semantic
Understanding	Concept	Sequence		Model
Part-of-Speech	POS Tag	Word	POS Tag LM	Tagging
Tagging	Sequence	Sequence		Model

Kullback-Leibler (KL) Divergence

• Distance measure between two p.m.f.'s (relative entropy)

$$D(p \| q) = \mathbb{E}_{p}[\log_{2} \frac{p(x)}{q(x)}] = \sum_{x \in X} p(x) \log_{2} \frac{p(x)}{q(x)}$$

- D(p/|q) >= 0 and D(p/|q) = 0 if only if q=p
- *KL Divergence* is a measure of the average distance between two probability distributions.

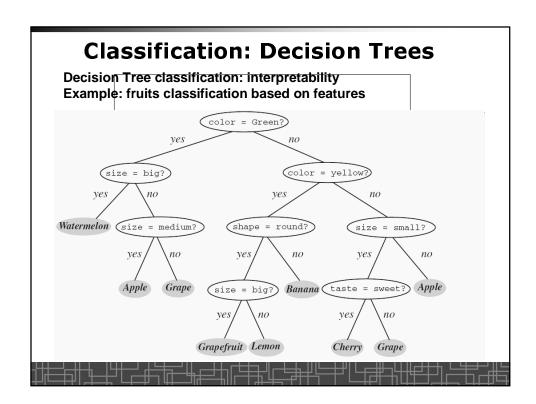
$$D(p(x, y) || q(x, y)) = D(p(x) || q(x)) + D(p(y | x) || q(y | x))$$

• Mutual information is a measure of independence

$$I(X,Y) = \sum_{x \in X} \sum_{y \in Y} p(x,y) \log_2 \frac{p(x,y)}{p(x)p(y)} = D(p(x,y) || p(x)p(y))$$

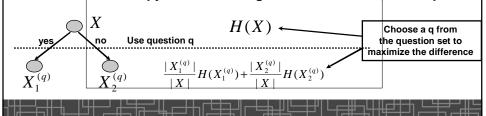
Conditional Relative Entropy

$$D(p(y|x) || q(y|x)) = \sum_{x \in X} p(x) \sum_{y \in Y} p(y|x) \log_2 \frac{p(y|x)}{q(y|x)}$$



Classification and Regression Tree (CART)

- Binary tree for classification: each node is attached a YES/NO question; Traverse the tree based on the answers to questions; each leaf node represents a class.
- CART: how to automatically grow such a classification tree on a data-driven basis.
 - Prepare a finite set of all possible questions.
 - For each node, choose the best question to split the node.
 "best" is in sense of maximum entropy reduction between "before splitting" and "after splitting".
 - Entropy→ uncertainty or chaos in data;
 Small entropy → more homogeneous the data is; less impure



The CART algorithm

- 1) Question set: create a set of all possible YES/NO questions.
- 2) Initialization: initialize a tree with only one node which consists of all available training samples.
- 3) Splitting nodes: for each node in the tree, find the best splitting question which gives the greatest entropy reduction.
- 4) Go to step 3) to recursively split all its children nodes unless it meets certain stop criterion, e.g., entropy reduction is below a pre-set threshold OR data in the node is already too little.

CART method is widely used in machine learning and data mining:

- 1. Handle categorical data in data mining;
- 2. Acoustic modeling (allophone modeling) in speech recognition;
- 3. Letter-to-sound conversion;
- 4. Automatic rule generation
- 5. etc.

Optimization of objective function (I)

- Optimization:
 - Set up an objective function Q();
 - Maximize or minimize the objective function with respect to the variable(s) in question.
- Maximization (minimization) of a function:
 - Differential calculus:
 - Unconstrained maximization/minimization

$$Q = f(x) \Rightarrow \frac{\mathrm{d} f(x)}{\mathrm{d} x} = 0 \Rightarrow x = ?$$

$$Q = f(x_1, x_2, \dots, x_N) \Rightarrow \frac{\partial f(x_1, x_2, \dots, x_N)}{\partial x_i} = 0 \Rightarrow ??$$

- Lagrange Optimization:
 - Constrained maximization/minimization

$$Q = f(x_1, x_2, \dots, x_N) \text{ with constraint } g(x_1, x_2, \dots, x_N) = 0$$

$$Q' = f(x_1, x_2, \dots, x_N) + \lambda \cdot g(x_1, x_2, \dots, x_N)$$

$$\frac{\partial Q'}{\partial x_1} = 0, \frac{\partial Q'}{\partial x_2} = 0, \dots, \frac{\partial Q'}{\partial x_N} = 0, \frac{\partial Q'}{\partial \lambda} = 0$$

Optimization of objective function (II)

Gradient descent (ascent) method:

$$Q = f(x_1, x_2, \dots, x_N)$$

For any x_i , start from any initial value $x_i^{(0)}$

$$x_i^{(n+1)} = x_i^{(n)} \pm \varepsilon \cdot \nabla_{x_i} f(x_1, x_2, \dots, x_N) \big|_{x_i = x_i^{(n)}}$$

where
$$\nabla_{x_i} f(x_1, x_2, \dots, x_N) = \frac{\partial f(x_1, x_2, \dots, x_N)}{\partial x_i}$$

- Other general optimization algorithms:
 - Linear Programming
 - Semi-definite Programming
 - Quadratic programming (nonlinear optimization)
- EM (Expectation-Maximization) algorithm
- Growth-Transformation method

Other Relevant Topics

- Statistical Hypothesis Testing
 - Likelihood ratio testing
- Linear Algebra:
 - Vector, Matrix;
 - Determinant and matrix inversion;
 - Derivatives of matrices;
 - etc.
- A good on-line matrix reference manual <u>http://www.ee.ic.ac.uk/hp/staff/dmb/matrix/</u>
 http://www.psi.toronto.edu/matrix/matrix.html