
WEIGHTED FINITE-STATE TRANSDUCERS IN SPEECH
RECOGNITION

Mehryar Mohri
�
, Fernando Pereira

�
, Michael Riley

�
�
AT&T Labs – Research

180 Park AV, Florham Park, NJ 07932 USA�
WhizBang! Labs

4616 Henry Street, Pittsburgh, PA 15213 USA�
mohri,riley � @research.att.com

fpereira@whizbang.com

ABSTRACT
We survey the weighted finite-state transducer (WFST) ap-

proach to speech recognition developed at AT&T over the last sev-
eral years. We show that WFSTs provide a common and natural
representation for HMM models, context-dependency, pronunci-
ation dictionaries, grammars, and alternative recognition outputs.
Furthermore, general finite-state operations combine these repre-
sentations flexibly and efficiently. Weighted determinization and
minimization algorithms optimize their time and space require-
ments, and a weight pushing algorithm distributes the weights
along the paths of a weighted transducer optimally for speech
recognition.

As an example, we describe a North American Business News
(NAB) recognition system built using these techniques that com-
bines the HMMs, full cross-word triphones, a lexicon of forty thou-
sand words, and a large trigram grammar into a single weighted
transducer that is only somewhat larger than the trigram word
grammar and that runs NAB in real-time on a very simple decoder.
In another example, we show that the same techniques can be used
to optimize lattices for second-pass recognition. In a third exam-
ple, we show how finite-state operations can be used to assemble
lattices from different recognizers to improve recognition perfor-
mance.

1. INTRODUCTION

The application of weighted finite-state transducers to
speech recognition [15, 21, 12, 14, 16, 18, 17] and speech
synthesis [27] has been the subject of considerable study at
AT&T in recent years. A transducer is a finite-state device
that encodes a mapping between input and output symbol
sequences; a weighted transducer associates weights such as
probabilities, durations, penalties, or any other quantity that
accumulates linearly along paths, to each pair of input and
output symbol sequences.

Since many information sources in speech processing in-
volve stochastic finite-state mappings between symbol se-
quences, weighted transducers are a natural choice to rep-
resent them. Further, many of the methods used to combine
and optimize these information sources in speech processing
can be efficiently implemented in terms of mathematically
well-defined primitive operations on weighted transducers.

To explain our approach, we will begin by defining
weighted finite-state acceptors and transducers more for-
mally. We will then show some simple speech-related ex-
amples and describe several general weighted finite-state
operations that are useful in speech applications. Finally,
we will give some examples where the transducer represen-
tation and finite-state operations are applied to significant
speech recognition problems with results that meet certain
optimality criteria.

2. WEIGHTED FINITE-STATE TRANSDUCER
METHODS

The definitions of the objects presented in this section are
given in the most general case and depend on the algebraic
structure of a semiring, �����
	����� ��� ��� [9]. A semiring is
a ring that may lack negation. It has two associative oper-
ations 	 and � that are closed over the set � , they have
identities � and � , respectively, and � distributes over 	 .
For example, �������������������� is a semiring.

The weights used in speech recognition often represent
probabilities. The appropriate semiring to use is then the
probability semiring �������������������� .

For numerical stability, implementations often replace
probabilities with log probabilities. The appropriate semir-
ing to use is then the image by �� "! of the semiring
�����
�����#�$������� and is called the log semiring. When log
probabilities are used and a Viterbi approximation is as-
sumed, the appropriate semiring is the tropical semiring
���&%('*),+.-"�0/�1#23����
+.���"� . The semiring abstraction per-
mits the definition of finite-state representations and algo-
rithms that treat these particular choices as special cases.

In the following definitions, we assume that an arbitrary
semiring �����
	����� �4� ��� is given. We will give examples
with different semirings to illustrate the use of the semirings
just mentioned.

Weighted Acceptors
Network models such as HMMs used in speech recogni-

tion are special cases of weighted finite-state acceptors (WF-
SAs). A WFSA 5768�:9;�<��$=>�0?�$@A�BC�$D�� over the semiring

� is given by an alphabet or label set 9 , a finite set of states
< , a finite set of transitions =�� <��(�:9 ')���-���� ��� < ,
an initial state ?�� < , a set of final states @	� < , an initial
weight B and a final weight function D .

A transition
 6 ��
� ��� ��
0�
������
0�
��
 % ���7= can be repre-
sented by an arc from the source state
�� to the destination
state
 % , with the label � ��
0� and weight � ��
0� . In speech
recognition, the transition weight � ��
0� often represents a
probability or a log probability.

A path in 5 is a sequence of consecutive transitions

�� ������
�� with
�� % 6	
���%���� , ? 6 �"������� ��� � � . Transitions
labeled with the empty symbol � consume no input. A suc-
cessful path ! 6"
�� ������
�� is a path from the initial state ? to
a final state #$�*@ . The label of the path ! is the result of
the concatenation of the labels of its constituent transitions:
� ��! � 6%� ��
 � � ������� ��
 � � . The weight associated to ! is the � -
product of the initial weight, the weights of its constituent
transitions and the final weight D ��
 � % � of the state reached
by ! : � ��! � 6 B&�&� ��
���� � �����$�'� ��
�� ��� D ��
�� % � . A symbol
sequence (is accepted by 5 if there exists a path ! labeled
with (: � ��! ��6)(. The weight associated by 5 to the se-
quence (is then the 	 -sum of the weights of the successful
paths ! labeled with (. Thus, a WFSA provides a mapping
from symbol sequences to weights [25, 4, 9].

Figure 1 gives some simple, familiar examples of WFSAs
as used in speech recognition. The automaton in Figure 1a
is a toy finite-state language model, with the words along
each complete path specifying a legal word sequence and
the product of the path arc probabilities giving the likeli-
hood of that word sequence. The network in Figure 1b gives
the possible pronunciations of one of the words in the lan-
guage model, data, with the phones along each complete
path specifying a legal pronunciation and the product of path
arc probabilities giving the likelihood of that pronunciation.
Finally, the network in Figure 1c encodes a typical left-to-
right, three distribution-HMM structure for one phone, with
the labels along a complete path specifying legal sequences
of acoustic distributions for that phone.

Weighted Transducers
Weighted finite-state transducers (WFSTs) generalize

WFSAs by replacing the single transition label by a pair
� ?�+* � of an input label ? and an output label * . While
a weighted transducer associates symbol sequences and
weights, a WFST associates pairs of symbol sequences and
weights, that is, it represents a weighted binary relation be-
tween symbol sequences [25, 4, 9]. �

Formally, a WFST , 6 � 9;�+- ��< �$= �$?���@A��B �0D4� over the
semiring � is given by an input alphabet 9 , an output al-
phabet - , a finite set of states < , a finite set of transitions
=�� <��(� 9 ').��-��/�(�0-(').��-,�/� ��� < , an initial state
?�� < , a set of final states @�� < , an initial weight B and a
final weight function D .

A transition
;6 ��
� ��� � ��
0� ����1 ��
0�
��� ��
0� ��
 % � can be repre-
sented by an arc from the source state
�� to the destination
2
In general, several paths may relate a given input sequence to possibly

distinct output sequences.

0 1
using/1

2data/0.66

3
intuition/0.33

4
is/1

5
better/0.7

worse/0.3

(a)

are/0.5

is/0.5

(b)

0 1
d/1

2
ey/0.5

ae/0.5
3

t/0.3

dx/0.7
4

ax/1

(c)

0

d1

1
d1

d2

2
d2

d3

3
d3

Figure 1: Weighted finite-state acceptor examples. By convention,
the states are represented by circles and marked with their unique
number. An initial state is represented by a bold circle, final states
by double circles. The label and weight of a transition 3 are marked
on the corresponding directed arc by 4�5638789�:;563�7 . The final weight< 5�=>7 of a final state = ?A@ is marked by =>9 < 5�=>7 or just omitted
when < 5�=>7CB D as in these examples. In all the figures in this paper
the initial weight is not marked because EFB D .

(a)

0 1
using:using/1

2data:data/0.66

3
intuition:intuition/0.33

4

is:is/0.5

are:are/0.5

is:is/1

5
better:better/0.7

worse:worse/0.3

(b)

0

1d:data/1

5

d:dew/1

2
ey:ε/0.5

ae:ε/0.5

6
uw:ε/1

3
t:ε/0.3

dx:ε/0.7
4

ax: ε /1

Figure 2: Weighted finite-state transducer examples.

state
 % , with the input label ���0��
0� , the output label � 1 ��
0�
and the weight � ��
0� . The definitions of path, path input la-
bel and path weight are those given earlier for acceptors. A
path’s output label is the concatenation of output labels of
its transitions.

The examples in Figure 2 encode (a superset of) the infor-
mation in the WFSAs of Figure 1a-b as WFSTs. Figure 2a
represents the same language model as Figure 1a by giving
each transition identical input and output labels. This adds
no new information, but is a convenient way of interpreting
any acceptor as a transducer that we will use often.

Figure 2b represents a toy pronunciation lexicon as a
mapping from phone sequences to words in the lexicon, in
this example data and dew, with probabilities representing
the likelihoods of alternative pronunciations. Since a word
pronunciation may be a sequence of several phones, the path
corresponding to each pronunciation has � -output labels on
all but the word-initial transition. This transducer has more
information than the WFSA in Figure 1b. Since words are
encoded by the output label, it is possible to combine the
pronunciation networks for more than one word without los-
ing word identity. Similarly, HMM structures of the form
given in Figure 1c can can be combined into a single trans-
ducer that preserves phone model identity while sharing dis-
tribution subsequences whenever possible.

Weighted Transducer Operations
Speech recognition architectures commonly give the run-

time decoder the task of combining and optimizing networks
such as those in Figure 1. The decoder finds word pronunci-
ations in its lexicon and substitutes them into the grammar.
Phonetic tree representations may be used to improve search
efficiency at this point [20]. The decoder then identifies the
correct context-dependent models to use for each phone in
context, and finally substitutes them to create an HMM-level
network. The code that performs these operations is often
highly specialized to particular model topologies. For ex-
ample, the context-dependent models might have to be tri-
phonic, the grammar might be restricted to trigrams, and the
alternative pronunciations might have to be enumerated in
the lexicon. Further, these network combinations and opti-
mizations are applied in a hardwired sequence to a prespec-
ified number of levels.

Our approach, in contrast, uses a uniform transducer
representation for � -gram grammars, pronunciation dictio-
naries, context-dependency specifications, HMM topology,
word, phone or HMM segmentations, lattices and � -best
output lists. We then rely on a common set of finite-state
operations to combine, optimize, search and prune these
automata [15]. Each operation implements a single, well-
defined function that has its foundations in the mathemat-
ical theory of rational power series [25, 4, 9]. Many of
those operations are the weighted transducer generalizations
of classical algorithms for unweighted acceptors. We have
brought together those and a variety of auxiliary operations
in a comprehensive weighted finite-state machine software
library (FsmLib) available for non-commercial use from the
AT&T Labs – Research Web site [19].

Basic union, concatenation, and Kleene closure opera-
tions combine networks in parallel, in series, and with arbi-
trary repetition, respectively. Other operations convert trans-
ducers to acceptors by projecting onto the input or output
label set, find the best or the � best paths in a weighted
transducer, remove unreachable states and transitions, and
sort acyclic automata topologically. We refer the interested
reader to the library documentation and an overview paper
[15] for further details on those operations. Here, we will
focus on a few key operations that support the ASR applica-
tions described in following sections.

Composition/Intersection As previously noted, a trans-
ducer represents a binary relation between a pair of symbol
sequences. The composition of two transducers represents
their relational composition. In particular, the composition
, 6������ of two transducers � and � has exactly one path
mapping sequence � to sequence � for each pair of paths,
the first in � mapping � to some sequence � and the second
in � mapping � to � . The weight of a path in , is the � -
product of the weights of the corresponding paths in � and
� [25, 4, 9].

Composition is useful for combining different levels of
representation. For instance, it can be used to apply a pro-
nunciation lexicon to a word-level grammar to produce a
phone-to-word transducer whose word sequences are re-

0

1a:b/0.1

2
b:a/0.2

c:a/0.3

3/0.6

a:a/0.4

b:b/0.5 0 1
b:c/0.3

2/0.7
a:b/0.4

a:b/0.6

(a) (b)

(0, 0) (1, 1)
a:c/0.4

(1, 2)c:b/0.7

(3, 2)/1.3
a:b/0.8

c:b/0.9

a:b/1

(c)

Figure 3: Example of transducer composition.

stricted to the grammar. Many kinds of ASR network com-
binations, both context-independent and context-dependent,
are conveniently and efficiently represented as composi-
tions.

Our composition algorithm generalizes the classical state-
pair construction for finite automata intersection [8] to
weighted acceptors and transducers. The composition ���	�
of transducers � and � has pairs of an � state and an � state
as states, and satisfies the following conditions: (1) its ini-
tial state is the pair of the initial states of � and � ; (2) its
final states are pairs of a final state of � and a final state of
� , and (3) there is a transition
 from ��
,���� to ��
��:���� � for
each pair of transitions
�� from
 to
 � and
�� from � to � �
such that the output label of
 matches the input label of
 � .
The transition
 takes its input label from
 � , its output label
from
 � , and its weight is the � -product of the weights of
 �
and
 � when the weights correspond to probabilities. Since
this computation is local — it involves only the transitions
leaving two states being paired — it can be given a lazy im-
plementation in which the composition is generated only as
needed by other operations on the composed machine. Tran-
sitions with � labels in � or � must be treated specially as
discussed elsewhere [14, 15].

Figure 3 shows two simple transducers over the tropical
semiring, Figure 3a and Figure 3b, and the result of their
composition, Figure 3c. The weight of a path in the resulting
transducer is the sum of the weights of the matching paths
in � and � since in this semiring � is defined as the usual
addition (of log probabilities).

Since we represent weighted acceptors by weighted trans-
ducers in which the input and output labels of each transi-
tion are identical, the intersection of two weighted acceptors
is just the composition of the corresponding transducers.

Determinization A weighted transducer is deterministic
or sequential if and only if each of its states has at most
one transition with any given input label. Figure 4 gives an
example of a non-deterministic weighted acceptor: at state
� , for instance, there are several transitions with the same
label � .

Weighted determinization, which generalizes the classi-
cal subset construction for determinizing finite automata [3],

0

1

a/1

b/2

c/5

2

a/3

b/4

c/7

d/8

e/9

3/0

f/9

e/8

e/10

e/11

f/12

f/13

Figure 4: Non-deterministic weighted acceptor � 2 .

applies to a weighted automaton and outputs an equivalent
deterministic weighted automaton. Two weighted acceptors
are equivalent if they associate the same weight to each in-
put string; weights may be distributed differently along the
paths of two equivalent acceptors. Two weighted transduc-
ers are equivalent if they associate the same output sequence
and weights to each input sequence; the distribution of the
weight or output labels along paths needn’t be the same in
the two transducers.

In contrast to the unweighted case, not all weighted au-
tomata can be determinized, as explained rigorously else-
where [12]. Fortunately, most weighted automata used in
speech processing can be either determinized directly or eas-
ily made determinizable by simple transformations, as we
shall discuss later. In particular, any acyclic weighted au-
tomaton can be determinized.

Our discussion and examples of determinization and,
later, minimization will be illustrated with weighted accep-
tors. The more general weighted transducer case can be
shown to be equivalent to this case by interpreting weight-
output label pairs as new ‘weights’ combined by the appro-
priate semiring [12].

The fundamental advantage of a deterministic automaton
over its nondeterministic counterparts is that it is irredun-
dant, that is, it contains at most one path matching any input
sequence, thus reducing the time and space required to pro-
cess an input sequence.

To eliminate redundancy, weighted determinization needs
to calculate the combined weight of all the paths for a given
input sequence. For instance, in the case, common in speech
recognition, where weights are interpreted as (negative) log-
arithms of probabilities, the weight of a path is obtained
by adding the weights of its transitions, and the combined
weight for an input string is the minimum of the weights of
all paths accepting that string. This is the case for the ex-
amples that follow. In the case where weights are probabili-
ties where the overall probability mass of all paths accepting
an input is sought, weights are multiplied along a path and
summed across paths. Both cases can be handled by the

0

1

a/1

b/2

c/5

2

d/8

e/9

3/0

e/8

f/9

e/11

f/12

Figure 5: Equivalent weighted automaton ��� obtained by
weighted determinization of � 2 .

same algorithm, parameterized with appropriate definitions
of the two weight combination operations.

Figure 5 shows the weighted determinization of automa-
ton 5 � from Figure 4. In general, the determinization of a
weighted automaton is equivalent to the original, that is, it
associates the same weight to each input string. For exam-
ple, there are two paths corresponding to the input string ���
in 5 � , with weights)"�"��� 6����
	 � �"�A6 ����- . The minimum
� is also the weight associated by 5� to the string ��� .

In the classical subset construction for determinizing un-
weighted automata, all the states reachable by a given input
from a given state are placed in the same subset. However,
since transitions with the same input label can have different
weights, only the minimum of those weights can be output,
and the leftover weights must be kept track of. Therefore,
the subsets in weighted determinization contain pairs ������� �
of a state � of the original automaton and a leftover weight
� .

The initial subset is) ��?�$�"�
- , where ? is the initial state of
the original automaton. For example, for automaton 5 � the
initial subset is) �����$� �- . Each new subset � is processed in
turn. For each element � of the input alphabet 9 labeling at
least one transition leaving a state of � , a new transition

leaving � is constructed in the result automaton. The input
label of
 is � and its weight is the minimum of the sums
� ��� where � is � ’s leftover weight and � is the weight of an
� -transition leaving a state � in � . The destination state of

is the subset � � containing those pairs ��� � ��� � � in which � � is
a state reached by a transition labeled with � from a state of
� and � � is the appropriate leftover weight.

For example, state � in 5 corresponds to the initial sub-
set)��������"�
- constructed by the algorithm. The 5 transi-
tion leaving � and labeled with � is obtained from the two
transitions labeled with � leaving the state � in 5 � : its
weight is the minimum of the weight of those two transi-
tions, and its destination state is the subset � � 6)�� �"��� ��� 6
�"� ��������	 � � 6��"�- , numbered � in 5� .

Note that the order of expansion of the result automaton
does not affect the result so this algorithm also admits a lazy
implementation.

Minimization Any deterministic automaton can be min-
imized using classical algorithms [2, 22]. In the same way,
any deterministic weighted automaton 5 can be minimized
using our minimization algorithm [12].

The resulting weighted automaton � is equivalent to the

0

1

a/9

b/10

c/13

2

d/19

e/30

3/0

e/0

f/1

e/0

f/1

Figure 6: Equivalent weighted automaton ��� obtained by pushing
from � � .

0 1

a/9

b/10

c/13

d/19

e/20

2/0
e/0

f/1

Figure 7: Equivalent weighted automaton ��� obtained by
weighted minimization from � � .

automaton 5 , and has the least number of states and the least
number of transitions among all deterministic weighted au-
tomata equivalent to 5 .

Weighted minimization is quite efficient. Its time com-
plexity is the same as that of classical minimization: linear
in the acyclic case (����� � � �), and ����� �# ! � � in the gen-
eral case, where � is the number of states and � the number
of transitions.

We can view deterministic weighted automaton 5 as an
unweighted automaton by interpreting each pair ��� ���;� of a
label � and a weight � as a single label. We can then ap-
ply the classical minimization algorithm to this automaton.
But, since the pairs for different transitions are all distinct,
classical minimization would have no effect on 5 .

The size of 5 can still be reduced by using true weighted
minimization. This algorithm works in two steps: the first
steps pushes weight among arcs, and the second applies the
classical minimization algorithm to the result with each dis-
tinct label-weight pair viewed as a distinct symbol, as de-
scribed above.

Pushing is a special case of reweighting. We describe
reweighting in the case of the tropical semiring, a similar
definition can be given in the case of other semirings. A
(non-trivial) weighted automaton can be reweighted in an
infinite number of ways that produce equivalent automata.
To see how, for convenience, assume the automaton 5 has
a single final state #�� . Let 	�
A<� � be an arbitrary
potential function on states. Update each transition weight

� Any automaton can be transformed to an equivalent automaton with a
single final state by adding a super-final state, making all previously final
states non-final, and adding an epsilon transition from each of the previ-
ously final states � to the super-final state with weight ������� .

as follows:

� ��
0��� � ��
0� � ��	>��
 % � ��	>��
 � �0�
and each final weight as follows:

D �0# � ��� D �0# � � � ��	>� ? � � ��	>� # � �0�
It is easy to see that with this reweighting, each potential
internal to any successful path from the initial state to the
final state is added and then subtracted, making the overall
change in path weight:

��	>� #�� � ��	>� ?�� �0� � ��	>� ?�� � ��	>� #�� �0� 6 �
Thus, reweighting does not affect the total weight of a suc-
cessful path and the resulting automaton is equivalent to the
original.

To push the weight in 5 towards the initial state as much
as possible, a specific potential function is chosen, the one
that assigns to each state the lowest path weight from that
state to the final state. After pushing, the lowest cost path
(excluding the final weight) from every state to the final state
will thus be � .

Figure 6 shows the result of pushing for the input 5 .
Thanks to pushing, the size of the automaton can then be re-
duced using classical minimization. Figure 7 illustrates the
result of the final step of the algorithm. No approximation
or heuristic is used: the resulting automaton 5�� is equivalent
to 5 .
3. WEIGHTED FINITE-STATE TRANSDUCER

APPLICATIONS
We now describe several applications of those weighted

finite-state transducer algorithms to speech recognition.

Network Combination
Consider the pronunciation lexicon in Figure 2b. Suppose

we form the union of this transducer with the pronunciation
transducers for the remaining words in the grammar � of
Figure 2a and then take its Kleene closure by connecting an
� -transition from each final state to the initial state. The re-
sulting pronunciation lexicon � would pair any sequence of
words from that vocabulary to their corresponding pronun-
ciations. Thus,

� ���
gives a transducer that maps from phones to word sequences
restricted to � .

We have used composition here to implement a context-
independent substitution. However, a major advantage of
transducers for speech recognition is that they generalize
naturally the notion of context-independent substitution of
label by a network to the context-dependent case. The
transducer of Figure 8a does not correspond to a simple
substitution, since it describes the mapping from context-
independent phones to context-dependent triphonic models,
denoted by phone � left context right context. Just two hy-
pothetical phones (and are considered for simplicity.

ε,* x,ε

x:x/ ε_ε

x,x

x:x/ ε_x

x,y

x:x/ ε_y

y,ε

y:y/ ε_ε

y,x

y:y/ ε_x

y,y

y:y/ ε_y x:x/x_ε

x:x/x_x

x:x/x_y

y:y/x_ ε

y:y/x_x

y:y/x_y

x:x/y_ε
x:x/y_x

x:x/y_y

y:y/y_ε

y:y/y_xy:y/y_y

Figure 8: Context-dependent triphone transducer.

(a)

0 1
x

2
y

3
x

4
x

5
y

(b)

0 1
x:x/e_y

2
y:y/x_x

3
x:x/y_x

4
x:x/x_y

5
y:y/x_e

(c)

0 1
x

5

y

2
y

4
x

3
x

y

y

(d)

0 1
x:x/e_y

2

y:y/x_e

3

y:y/x_x

4
x:x/y_x

5
x:x/x_y

y:y/x_e

6

y:y/x_y y:y/y_e

y:y/y_x

Figure 9: Context-dependent composition examples.

Each state encodes the knowledge of the previous and next
phones. State labels in the figure are pairs ��� ��� � of the past
� and the future � , with � representing the start or end of a
phone sequence and � an unspecified future. For instance, it
is easy to see that the phone sequence ((is mapped by the
transducer to (��� ��(((�� � via the unique state se-
quence �0����� ����(� �� �� ��(����(�+�
� . More generally, when there
are � context-independent phones, this triphonic construc-
tion gives a transducer with ����� � states and ����� � � tran-
sitions. A tetraphonic construction would give a transducer
with ����� � � states and �������,� . In real applications, context-
dependency transducers will benefit significantly from de-
terminization and minimization since the � -phone is mod-
eled by an HMM that is likely to be shared among many
� -phones due to context clustering required by data sparsity.

The following simple example shows the use of this
context-dependency transducer. A context-independent
string can represented by the obvious automaton having a
single path as in the example in Figure 9a. This can then be
composed with the context-dependency transducer in Figure

8. � The result is the transducer in Figure 9b, which has a sin-
gle path labeled with the context-independent labels on the
input side and the corresponding context-dependent labels
on the output side.

The context-dependency transducer, of course, can be
composed with more complex networks than the trivial
one in Figure 9a. For example, composing the context-
dependency transducer with the transducer in Figure 9c re-
sults in the transducer in Figure 9d. By definition of rela-
tional composition, this must correctly replace the context-
independent units with the appropriate context-dependent
units on all its paths. Therefore, composition provide a
convenient and general mechanism for applying context-
dependency to ASR networks.

If we let � represent a context-dependency transducer
from context-dependent phones to context-independent
phones, then

����� ���
gives a transducer that maps from context-dependent phones
to word sequences restricted to the grammar � . Note that �
is the inverse of a transducer such as in Figure 8; that is the
input and output labels have been exchanged on all transi-
tions. By convention, we adopt this form of the context-
dependency transducer when we use it in recognition cas-
cades.

As we did for the pronunciation lexicon, we can represent
the HMM set as � , the closure of the union of the individual
HMMs (cf. Figure 1c). Note that we do not explicitly rep-
resent the HMM-state self-loops in � . Instead, we simulate
those in the run-time decoder. With � in hand,

� ��� ��� ���
gives a transducer that maps from distributions to word se-
quences restricted to � .

We thus can use composition to combine all levels of our
ASR network into an integrated network in a convenient,
efficient and general manner. When these machines are stat-
ically provided, we can apply the optimizations discussed
� Before composition, we promote the automaton in Figure 9a to the

corresponding transducer with identical input and output labels.

next to reduce decoding time and space requirements. If
the network needs to be modified dynamically, for exam-
ple by adding the results of a database lookup to the lexicon
and grammar in an extended dialogue, we adopt a hybrid
approach that optimizes the fixed parts of the network and
uses lazy composition to combine them with the dynamic
portions during recognition.

Network Standardization
To optimize an integrated network, we use three addi-

tional steps; (a) determinization, (b) minimization, and (c)
factoring.

Determinization We use weighted transducer deter-
minization at each step of the composition of each pair of
networks. The main purpose of determinization is to elimi-
nate redundant paths in the composed network, thereby sub-
stantially reducing recognition time. In addition, its use in
intermediate steps of the construction also helps to improve
the efficiency of composition and to reduce network size.

It can be shown that, in general, the transducer � � �
from phone sequences to words is not determinizable. This
is clear in presence of homophones. But, even in the absence
of homophones, � � � might not be determinizable because,
in some cases, the first word of the output sequence can-
not be determined before the entire input phone sequence is
known. Such unbounded output delays make � � � non-
determinizable.

To make it possible to determinize � � � , we introduce an
auxiliary phone symbol denoted ��� marking the end of the
phonemic transcription of each word. Other auxiliary sym-
bols � � ��������� � � are used when necessary to distinguish
homophones as in the following example:

r eh d � � read
r eh d � � red

At most � auxiliary phones, where � is the maximum de-
gree of homophony, are introduced. The pronunciation dic-
tionary transducer augmented with these auxiliary symbols
is denoted by �� .

For consistency, the context-dependency transducer �
must also accept all paths containing these new symbols.
For further determinizations at the context-dependent phone
level and distribution level, each auxiliary phone must be
mapped to a distinct context-dependent phone. Thus, self-
loops are added at each state of � mapping each auxiliary
phone to a new auxiliary context-dependent phone. The aug-
mented context-dependency transducer is denoted by �� .

Similarly, each auxiliary context-dependent phone must
be mapped to a new distinct distribution name. � self-loops
are added at the initial state of � with auxiliary distribution
name input labels and auxiliary context-dependent phone
output labels to allow for this mapping. The modified HMM
model is denoted by �� .

It is straightforward to see that the addition of auxiliary
symbols guarantees the determinizability of the transducer
obtained after each composition, allowing the application of
weighted transducer determinization at several stages in our
construction.

First, �� is composed with � and determinized, yielding
det � ������ � . � The benefit of this determinization is the re-
duction of the number of alternative transitions at each state
to at most the number of distinct phones at that state, while
the original network may have as many as 	 outgoing tran-
sitions at some states where 	 is the vocabulary size. For
large tasks in which the vocabulary has ���	� � ����
 words,
the advantages of the optimization are clear.

The context-dependency transducer might not be deter-
ministic with respect the context-independent phone labels.
For example, the transducer shown in figure 8 is not deter-
ministic since the initial state admits several outgoing tran-
sitions with the same input label (or . To build a small
and efficient integrated network, it is important to first de-
terminize the inverse of �� . �

�� is then composed with the resulting transducer and
determinized. Similarly �� is composed with the context-
dependent network and determinized. This last determiniza-
tion increases sharing among HMM models that start with
the same distributions: at each state of the resulting inte-
grated network, there is at most one outgoing transition la-
beled with any given distribution name. This leads to an-
other reduction in recognition time.

As a final step, the auxiliary distribution symbols of the
resulting network are simply replaced by � ’s. The corre-
sponding operation is denoted by !� . The sequence of op-
erations just described is summarized by the following con-
struction formula:

� 6 !���� det ���� � det ������ det ���� ��� �0�$�0�
where parentheses indicate the order in which the operations
are performed. The result

�
is an integrated recognition net-

work that can be constructed even in very large-vocabulary
tasks and leads to a substantial reduction of the recognition
time as shown by the experimental results below.

Minimization Once we have determinized the integrated
network, it is worth minimizing it. To do so, the auxiliary
symbols are left in place, the minimization algorithm is ap-
plied, and then the auxiliary symbols are removed:

� 6 ! � � min � det ���� � det ������ det ���� ��� �$�0�$�0�
In addition to reducing the number of state and tran-

sitions, minimization has another another useful effect on
recognition performance. As described earlier, a key step of
minimization is to push weights toward the initial state. This
has an very large effect on pruning for our decoder, which
uses a conventional Viterbi beam search. In fact, if pushing
were used exactly as described earlier, it slows down decod-
ing many fold. However, with a conceptually simple modi-
fication, it has a beneficial effect on the decoding speed.
�
An � -gram language model � is often constructed as a deterministic

weighted automaton with back-off states – in this context, the symbol � is
treated as a regular symbol for the definition of determinism. If this does
not hold, � is first determinized [12].�

Triphonic or more generally � -phonic context-dependency models can
be built directly with a deterministic inverse [24].

The modification is that instead of using the lowest weight
from each to state to the (super-)final state as the reweighting
potential function, the negative log of the sum of all proba-
bility mass from each state to the (super-)final state is used.
When the integrated network is reweighted with this poten-
tial function, the total sum of probabilities over all transi-
tions leaving any state is � . Thus, the transducer is pushed
in terms of probabilities along all future paths from a given
state rather than the highest probability over the single best
path. In other words, it is pushed with respect the log semir-
ing rather than the tropical semiring. Interestingly, it can be
proved that using either pushing in the minimization step re-
sults in equivalent machines. However, by using log proba-
bility pushing (pushing in the log semiring), a property that
holds for the language model now also holds for the inte-
grated network, namely the weights of the transitions leav-
ing each state are normalized as in a probabilistic automaton
[5]. We have observed that probability pushing makes prun-
ing more effective, and conjecture that this is because during
pruning the acoustic likelihoods and the network probabil-
ities are now synchronized to obtain the optimal likelihood
ratio test for sequential decisions. We further conjecture that
this reweighting is the best possible for pruning. A rigor-
ous proof of these conjectures will, however, require careful
mathematical analysis of pruning.

One step that has not been described yet is how to com-
pute the reweighting potential function. If the lowest cost
path potential function is used, then classical single-source
shortest path algorithms can be employed [6]. However,
adopting the sum of probability mass potential function re-
quired a significant generalization, of independent interest,
to the classical algorithms [13].

We have thus standardized the integrated network in our
construction — it is the unique deterministic, minimal net-
work for which the weights for all transitions leaving any
state sum to � in probability, up to state relabeling. There-
fore, if one accepts that these are desired properties of the
result network, then our methods obtain the optimal solu-
tion among all integrated networks.

Factoring Our decoder has a separate representation for
variable-length left-to-right HMMs for efficiency reasons,
which we will call the HMM specification. However, the in-
tegrated network of the previous section does not take good
advantage of this since, having combined the HMMs into the
recognition network proper, the HMM specification consists
of trivial one-state HMMs. However, by suitably factoring
the integrated network, we can again take good advantage of
this feature.

A path whose states other than the first and last have at
most one outgoing and one incoming transition is called a
linear path. The integrated recognition network just de-
scribed may contain many linear paths after the composition
with �� , and after determinization. The set of all linear paths
of
�

is denoted by Lin � � � .
Input labels of

�
name one-state HMMs. We can replace

the input of each linear path of
�

of length � by a single
label naming an � -state HMM. The same label is used for

all linear paths with the same input sequence. The result
of that replacement is a more compact transducer denoted
by @ . The factoring operation on

�
leads to the following

decomposition: � 6 � � � @
where � � is a transducer mapping variable-length left-to-
right HMM state distribution names to � -state HMMs. Since
� � can be separately represented via the decoder’s HMM
specification, the actual recognition network is reduced to
@ .

Linear paths inputs are in fact replaced by a single label
only when this helps to reduce the size of the network. This
can be measured by defining the gain of the replacement of
an input sequence � of a linear path by:

� ���C� 6 �
��� Lin ���
	�� �� �������

� � � � � *�� !�� � � �

where
� � � denotes the length of the sequence � , ?�� !�� the in-

put label and *�� !�� the output label of a path ! . The replace-
ment of a sequence � helps reduce the size of the network if
� ���C��� � .

Our implementation of the factoring algorithm allows one
to specify the maximum number
 of replacements done (the

 sequences with the highest gain are replaced), as well as
the maximum length of the linear chains that are factored.

Factoring does not affect recognition time, however it can
lead to a substantial reduction in the size of the network. We
believe more effective, less constrained factoring methods
may be found in the future.

Experimental Results – First-Pass Networks We applied
the techniques outlined in the previous sections to build
an integrated, optimized recognition network for a �"����� �"� -
word vocabulary North American Business News (NAB)
task. The following models were used:

� Acoustic model of 7,208 distinct HMM states, each
with an emission mixture distribution of up to twelve
Gaussians.

� Triphonic context-dependency network � with 1,525
states and 80,225 transitions.

� �"� �$�"� � -word pronunciation dictionary � .

� Trigram language model � with 3,926,010 transitions
built by Katz’s back-off method with frequency cutoffs
of 2 for bigrams and 4 for trigrams and shrunk with an
epsilon of � � using the method of Seymore and Rosen-
feld [26].

We applied the network optimization steps as described
in the previous section except that we applied the minimiza-
tion and weight pushing after factoring the network. Table 1
gives the size of the intermediate and final networks.

Observe that the factored network min ��@ � has only about
�"��� more transitions than � . The HMM specification � �
consists of 430,676 HMMs with an average of �>� � states per

network states transitions

� 1,339,664 3,926,010
� ��� 8,606,729 11,406,721
det ��� ��� � 7,082,404 9,836,629
� � det ��� ��� �0� 7,273,035 10,201,269
det � � ��� ��� ��� � 18,317,359 21,237,992
@ 3,188,274 6,108,907
min ��@ � 2,616,948 5,497,952

Table 1: Size of the first-passs recognition networks in the NAB�����������
-word vocabulary task.

network x real-time
� ��� ��� 12.5
� � det ��� ��� � 1.2
det � � � ����� ��� � 1.0
min ��@ � 0.7

Table 2: Recognition speed of the first-pass networks in the NAB�����������
-word vocabulary task at 83% word accuracy

HMM. It occupies only about ����� of the memory of min ��@ �
in the decoder (due to the compact representation possible
from its specialized topology). Thus, the overall memory
reduction from factoring is substantial.

We used these networks in a simple, general-purpose,
one-pass Viterbi decoder applied to the DARPA NAB Eval
’95 test set. Table 3 shows the speed of recognition on an
Compaq Alpha 21284 processor for the various optimiza-
tions, where the word accuracy has been fixed at 83.0%. We
see that the fully-optimized recognition network, min ��@ � ,
substantially speeds up recognition.

Experimental Results – Rescoring Networks We have
also applied the optimization techniques to lattice rescoring
for a ���"����� � � -word vocabulary NAB task. The following
models were used to build lattices in a first pass:

� Acoustic model of 5,520 distinct HMM states, each
with an emission mixture distribution of up to four
Gaussians.

� Triphonic context-dependency network � with 1,525
states and 80,225 transitions.

� ��� ����� �"� -word pronunciation dictionary � .

� bigram language model � with 1,238,010 transitions
built by Katz’s back-off method with frequency cutoffs
of 2 for bigrams and shrunk with an epsilon of ���"� us-
ing the method of Seymore and Rosenfeld [26].

We used an efficient approximate lattice generation
method [1] to generate word lattices. These word lattices
were then used as the ‘grammar’ in a second rescoring pass.
The following models were used in the second pass:

� Acoustic model of 7,208 distinct HMM states, each
with an emission mixture distribution of up to four
Gaussians. The model was adapted to each speaker us-
ing a single full-matrix MLLR transform [10].

network x real-time
� ��� ��� .18
� � det ��� ��� � .13
� � min � det ��� ��� �0� .02

Table 3: Recognition speed of the second-pass networks in the
NAB D
	 ��������� -word vocabulary task at 88% word accuracy

� Triphonic context-dependency network � with 1,525
states and 80,225 transitions.

� ���"����� � � -word stochastic, TIMIT-trained, multiple-
pronunciation lexicon � [23].

� 6-gram language model � with 40,383,635 transitions
built by Katz’s back-off method with frequency cutoffs
of 1 for bigrams and trigrams, 2 for 4-grams, and 3 for
5-grams and 6-grams, and shrunk with an epsilon of �
using the method of Seymore and Rosenfeld.

We applied the network optimization steps described in
the previous section but only to the level of � ��� (where �
is each lattice). Table 3 shows the the speed of second-pass
recognition on an Compaq Alpha 21284 processor for these
optimizations when the word accuracy is fixed at 88.0% on
the DARPA Eval ’95 test set.
 We see that the optimized
recognition networks again substantially speed up recogni-
tion.

Recognizer Combination
It is known that combining the output of different rec-

ognizers can improve recognition accuracy. [7]. We de-
scribe a simple lattice-based method for accomplishing this.
Our method is to add together the negative log probability
estimate � ��*�� � � � �"��(� for sentence hypothesis � and utter-
ance (from each of the � recognizer lattices and then select
the lowest cost path in this combination. This can be im-
plemented by taking the finite-state intersection of the lat-
tices and then finding the lowest cost path using the acyclic
single-source shortest path algorithm [6]. (Recall that the
finite-state intersection of two acceptors 5 �� 5� is identical
to the finite-state composition of ,�� �;, where , � and ,
are the corresponding transducers with identical input and
output labels).

We used this combination technique in the AT&T sub-
mission to the NIST Large Vocabulary Continuous Speech
Recognition (LVCSR) 2000 evaluation [11]. For that sys-
tem, we used six distinct acoustic models to generate six
sets of word lattices. These acoustic models differed in
their context-dependency level (triphone vs. pentaphone),
whether they were gender-dependent and whether they
were cepstral variance normalized. All these models were
MLLR-adapted. The system used a 40,000 word vocabulary
and a � -gram language model. Table 4 shows the word er-
ror rate on the LVCSR Eval ’00 test set using each of these
models. Also shown are the word error rates after the finite-
state intersection of the lattices for the first � acoustic mod-

�
The recognition speed excludes the offline network construction time.

Word Error Rate (%)
Model/pass penta GD vn penta GD nvn penta GI vn penta GI n vn tri GD vn tri GI nvn
MLLR 30.3 30.2 30.8 30.7 31.4 32.6
Combined 30.3 29.6 28.9 28.8 28.7 28.6

Table 4: Word error rate on LVCSR-2000 task before and after model combination

els, where � 6 � through � . � As we can see, the six-fold
model combination gives an absolute � � ��� word error rate
reduction over the best single model.

4. CONCLUSION
We gave a brief overview of weighted finite-state trans-

ducer methods and their application to speech recognition.
The algorithms we described are very general. Similar tech-
niques can be used in various other areas of speech process-
ing such as speech synthesis, in text and image processing,
and in many other fields.

REFERENCES
[1] A. Ljolje and F. Pereira and M. Riley. Efficient general lat-

tice generation and rescoring. In Proceedings of the Euro-
pean Conference on Speech Communication and Technology
(Eurospeech ’99), Budapest, Hungary, 1999.

[2] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The design and
analysis of computer algorithms. Addison Wesley: Reading,
MA, 1974.

[3] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers, Principles,
Techniques and Tools. Addison Wesley: Reading, MA, 1986.

[4] J. Berstel and C. Reutenauer. Rational Series and Their Lan-
guages. Springer-Verlag: Berlin-New York, 1988.

[5] J. W. Carlyle and A. Paz. Realizations by stochastic finite
automaton. Journal of Computer and System Sciences, 5:26–
40, 1971.

[6] T. Cormen, C. Leiserson, and R. Rivest. Introduction to Al-
gorithms. The MIT Press: Cambridge, MA, 1992.

[7] J. Fiscus. Post-processing system to yield reduced word error
rates: Recognizer output voting error reduction (rover). In
Proceedings of the 1997 IEEE ASRU Workshop, pages 347–
354, Santa Barbara, CA, 1997.

[8] J. E. Hopcroft and J. D. Ullman. Introduction to Automata
Theory, Languages, and Computation. Addison Wesley:
Reading, MA, 1979.

[9] W. Kuich and A. Salomaa. Semirings, Automata, Languages.
Number 5 in EATCS Monographs on Theoretical Computer
Science. Springer-Verlag, Berlin, Germany, 1986.

[10] C. Leggetter and P. Woodland. Maximum likelihood linear
regession for speaker adaptation of continuous density hmms.
Computer Speech and Language, 9(2):171–186, 1995.

[11] A. Ljolje, D. Hindle, M. Riley, and R. Sproat. The at&t lvcsr-
2000 system. In Proceedings of the NIST Large Vocabulary
Conversational Speech Recognition Workshop, College Park,
Maryland, 2000.

[12] M. Mohri. Finite-state transducers in language and speech
processing. Computational Linguistics, 23:2, 1997.

[13] M. Mohri. General Algebraic Frameworks and Algorithms
for Shortest-Distance Problems. Technical Memorandum
981210-10TM, AT&T Labs - Research, 62 pages, 1998.

�
If a particular lattice used in the intersection gives an empty result (no

paths in common), that acoustic model’s lattice is skipped for that utterance.

[14] M. Mohri, F. C. N. Pereira, and M. Riley. Weighted automata
in text and speech processing. In ECAI-96 Workshop, Bu-
dapest, Hungary. ECAI, 1996.

[15] M. Mohri, F. C. N. Pereira, and M. Riley. The design princi-
ples of a weighted finite-state transducer library. Theoretical
Computer Science, 231:17–32, January 2000.

[16] M. Mohri and M. Riley. Network optimizations for large vo-
cabulary speech recognition. Speech Communication, 25:3,
1998.

[17] M. Mohri and M. Riley. Integrated Context-Dependent Net-
works in Very Large Vocabulary Speech Recognition. In Pro-
ceedings of the 6th European Conference on Speech Commu-
nication and Technology (Eurospeech ’99), Budapest, Hun-
gary, 1999.

[18] M. Mohri, M. Riley, D. Hindle, A. Ljolje, and F. C. N.
Pereira. Full expansion of context-dependent networks in
large vocabulary speech recognition. In Proceedings of the
International Conference on Acoustics, Speech, and Signal
Processing (ICASSP ’98), Seattle, Washington, 1998.

[19] Mohri, Mehryar and Fernando C. N. Pereira and Michael Ri-
ley. General-purpose Finite-State Machine Software Tools.
http://www.research.att.com/sw/tools/fsm, AT&T Labs – Re-
search, 1997.

[20] S. Ortmanns, H. Ney, and A. Eiden. Language-model look-
ahead for large vocabulary speech recognition. In Pro-
ceedings of the International Conference on Spoken Lan-
guage Processing (ICSLP’96), pages 2095–2098. University
of Delaware and Alfred I. duPont Institute, 1996.

[21] F. C. N. Pereira and M. Riley. Finite State Language Pro-
cessing, chapter Weighted Rational Transductions and their
Application to Human Language Processing. The MIT Press,
1997.

[22] D. Revuz. Minimisation of acyclic deterministic automata
in linear time. Theoretical Computer Science, 92:181–189,
1992.

[23] M. Riley, W. Byrne, M. Finke, S. Khudanpur, A. Ljolje,
J. McDonough, H. Nock, M. Saraclar, C. Wooters, and
G. Zavaliagkos. Stochastic pronunciation modelling form
hand-labelled phonetic corpora. Speech Communication,
29:209–224, 1999.

[24] M. Riley, F. C. N. Pereira, and M. Mohri. Transducer compo-
sition for context-dependent network expansion. In Proceed-
ings of Eurospeech’97. Rhodes, Greece, 1997.

[25] A. Salomaa and M. Soittola. Automata-Theoretic Aspects of
Formal Power Series. Springer-Verlag: New York, 1978.

[26] K. Seymore and R. Rosenfeld. Scalable backoff language
models. In Proceedings of ICSLP, Philadelphia, Pennsylva-
nia, 1996.

[27] R. Sproat. Multilingual text analysis for text-to-speech syn-
thesis. Journal of Natural Language Engineering, 2(4):369–
380, 1997.

