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Abstract—In this paper, methods of improving the robustness
and accuracy of acoustic modeling using decision tree based
state tying are described. A new two-level segmental clustering
approach is devised which combines the decision tree based state
tying with agglomerative clustering of rare acoustic phonetic
events. In addition, a unified maximum likelihood framework
for incorporating both phonetic and nonphonetic features in
decision tree based state tying is presented. In contrast to other
heuristic data separation methods, which often lead to training
data depletion, a tagging scheme is used to attach various features
of interest and the selection of these features in the decision tree
is data driven. Finally, two methods of using multiple-mixture
parameterization to improve the quality of the evaluation function
in decision tree state tying are described. One method is based on
the approach of -means fitting and the other method is based on
a novel use of a local multilevel optimal subtree. Both methods
provide more accurate likelihood evaluation in decision tree clus-
tering and are consistent with the structure of the decision tree.
Experimental results on Wall Street Journal corpora demonstrate
that the proposed approaches lead to a significant improvement in
model quality and recognition performance.

Index Terms—Acoustic modeling, decision tree state tying,
speech recognition.

I. INTRODUCTION

DECISION tree state tying based acoustic modeling has be-
come increasingly popular for modeling speech variations

in large vocabulary speech recognition [1], [10], [19], [24], [25].
In this approach, the acoustic phonetic knowledge of the target
language can be effectively incorporated in the model according
to a consistent maximum likelihood framework. The statistical
framework of decision tree in acoustic modeling provides two
major advantages over the previous rule or bottom up based ap-
proaches. First, the classification and prediction power of the de-
cision tree allows to synthesize model units or contexts, which
do not occur in the training data. Second, the node splitting
procedure of decision tree based state tying is a model selec-
tion process. It provides a way of maintaining the balance be-
tween model complexity and the number of parameters in order
to render a robust model parameter estimation from the limited
amount of training data.

Recently, there are many attempts to improve the phonetic
decision tree state tying based approach in acoustic modeling
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[2], [4], [8], [11], [12], [16], [17], [23]. While some authors [4],
[12], [16] concentrate on the problem of constructing improved
trees, others try to generate optimal sets of questions automat-
ically [2], [23]. Two problems in decision tree state tying are
of particular interest. One is the tree growing and node splitting
problem and it concerns the issue of how to find an optimal node
split, given the particular parametric form of the impurity func-
tion (e.g., the likelihood of the training data). Another one is the
parametric modeling problem of the data distributions during
the process of decision tree node splitting. For phonetic decision
tree based acoustic modeling, these two problems are closely
related. The problem of optimal node splitting is about finding
the best node split, and the parametric modeling is a problem
of providing an appropriate metric, which defines the quality
of the split. In general, construction of a globally optimal de-
cision tree is a computationally intractable problem. The para-
metric forms of distributions used in decision tree node splitting
are often based on Gaussian distributions, although more ac-
curate multiple-mixture Gaussian distributions are used in the
final acoustic model. This disparity is due in part to the com-
putational complexity in the decision tree clustering process.
The multiple-mixture Gaussian distribution for each tree node
needs to be re-estimated from the data, whereas the parameters
of the single-mixture Gaussian distribution can be derived from
the cluster members without going back to the training data.

In this paper, we discuss methods for improving the robust-
ness and accuracy in decision tree clustering based acoustic
modeling. The novel contributions of this paper are as follows.

• A new segmental two-level clustering algorithm is de-
vised. It combines the phonetic decision tree based state
tying with agglomerative clustering to improve model
coverage on rarely seen acoustic phonetic events in the
training data.

• We present a unified maximum likelihood framework
to incorporate generalized phonetic and nonphonetic
features in decision tree based state tying. It is data driven
and solves the problem of training data depletion in
condition dependent acoustic modeling.

• A tagging scheme is introduced in decision tree based state
tying and is used to tag various features of interest. In
our proposed approach, the tagged information are used in
conjunction with phonetic questions during decision tree
state tying.

• Two applications of using the above mentioned gen-
eral tagged features and acoustic phonetic questions in
decision tree state tying are given. One application is
for gender-dependent acoustic modeling and the other
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one is for word boundary dependent acoustic modeling.
Comparisons are made and performance advantages are
demonstrated.

• We present two approaches of using multiple-mixture
Gaussian parameterization to improve the likelihood
evaluation function in decision tree node splitting. One
is based on a special-means fitting algorithm and the
other one is based on -level optimal subtree. Both
approaches are extensions of the conventional one-level
optimal single-mixture Gaussian based approach.

• A short-list based caching scheme is described which
significantly reduces the computational complexity in
using multiple-mixture Gaussian parameterization in
decision tree construction. Experimental evidences are
given that multi-level optimal tree building procedure
is computationally feasible and advantageous in large
vocabulary speech recognition.

The organization of this paper is as follows. We introduce the
basic structure of decision tree based acoustic modeling in Sec-
tion II. The two-level segmental clustering approach for robust
decision tree state tying is described in Section III. The unified
maximum likelihood framework for incorporating generalized
features is presented in Section IV. In Section V, we introduce
two approaches of using multiple-mixture Gaussian parameter-
ization in decision tree construction. The theoretical basis and
the short-list based caching scheme are described in detail. Sec-
tion VI is devoted to experimental results and comparisons are
made to various known approaches. Finally, we summarize our
findings in Section VII.

II. DECISION TREE STATE TYING

One approach to deal with the data sparseness problem in
training acoustic models involves sharing of models across dif-
ferent contexts to form the so-called generalized triphones [13].
This model based sharing can be further improved to handle the
left and right contexts independently and leads to state based
sharing of parameters [14]. However these techniques use only
a priori phonetic knowledge and are not supported by the actual
training data. Although agglomerative clustering procedures are
used to automatically determine the tying of states from data
and result in high recognition performance [24], the problem of
modeling unseen or rarely seen acoustic contexts in the training
data remains. Decision tree based state clustering is shown to
lead to similar and often better performance in large vocabu-
lary speech recognition [10], [25]. It integrates botha priori
phonetic knowledge and acoustic similarities derived from data.
In decision tree clustering, single mixture Gaussian models are
trained first and the phonetic decision tree is used to establish
the state tying. One decision tree is constructed for each state
of each center phone and all the context dependent states of
this phone are clustered into groups by the decision tree algo-
rithm. The resulting clusters of tied states are then retrained and
multiple-mixture Gaussian distribution HMMs are estimated. In
[12], [17] a joint decision tree for all states of each center phone
was introduced, but it was found that the additional questions
about the state positions immediately separated the trees and the

single tree for a given phone was nothing more than the previous
trees joined by additional nodes [12].

Usually, a decision tree is built using a top-down sequential
optimization procedure (e.g. classification and regression tree,
or CART [3]) starting from the root node of the tree. Each node
is split according to the phonetic question which results in the
maximum increase in the likelihood on the training data. The
gain in likelihood due to a node split can be calculated effi-
ciently from pre-calculated sufficient statistics of the affected
states [19], [24]. The process is repeated until the likelihood gain
falls below a threshold. A minimum occupation count is often
applied to ensure that all terminal nodes have sufficient training
data associated with them. Different sets of phonetic questions
have been investigated in [11], [12] and good recognition re-
sults were obtained using questions about phonetic features and
contexts. Methods of improving the quality of the set of ques-
tions were also proposed, and additional questions can be added
through phoneme or diphone clustering [2] or by a multipass
procedure, which adds the intersections of simple questions of a
previously generated decision tree to the question set used in the
next pass [23]. Additional stopping criteria based on cross-val-
idation have been investigated in [11], [12], [16]. Typically an
over-grown tree is constructed first and then the tree is pruned
back by merging terminal nodes with different parents, if the
likelihood decrease due to node merging is less than a preset
stopping threshold. In phonetic decision tree clustering, a set of
HMM states is recursively partitioned into subsets according to
the phonetic questions at each tree node when traversing the tree
from the root to its leaves. States reaching the same leaf node of
the decision tree are regarded as similar and tied. The missing
triphones are constructed by answering the phonetic questions
for the missing triphone and traversing the decision tree from the
root node to a final leaf. The most similar leaf node determined
by the decision tree is used to synthesis the unseen triphone.

Since the log-likelihood of the training data
generated from a tree node can not be easily

calculated, the common EM auxiliary function [7] is used as
objective of the clustering

(1)

where denotes the unobserved data and
is the sequence of observation vectors from the training
data. Assuming a single mixture Gaussian distribution

for the node , the unobserved data is the
sequence of HMM states and the auxiliary function becomes

(2)

where is thea posterioriprobability of the observation
at time generated from state. Using basic properties of

Gaussian distributions, then [25]

(3)
where is the dimensionality of the data vector and de-
notes the determinant of the covariance matrix . Because
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of the monotonic relation between auxiliary function and like-
lihood: , the sequential opti-
mization of the auxiliary function in the decision tree clustering
also results in the optimization of the likelihood function. There-
fore the auxiliary function can be used as objective in the deci-
sion tree. By using the single mixture Gaussian assumption for
the cluster distribution, the likelihood variation of clustering can
be efficiently evaluated for every tree nodebased on the al-
ready available sufficient statistics of its member states without
additional need to access the training data. Each phonetic ques-
tion splits the states into two subsets and and therefore
partitions the acoustic space. The question with maximum in-
crease in the auxiliary function

is selected to split the node. The quality of the decision
tree based state tying depends on the parametric form of the dis-
tribution used in evaluating , which should approximate as
closely as possible to the multiple-mixture Gaussian distribution
used in the final model. The single Gaussian parameterization
for cluster distributions in the conventional decision tree based
state tying only provides a very limited acoustic resolution and
may become inadequate to model the acoustic variability in the
training data.

III. T WO-LEVEL SEGMENTAL CLUSTERING

Previous studies in decision tree tying based acoustic mod-
eling focus mainly on how to incorporate decision tree tying in
Baum–Welch based parameter estimation [1], [25]. These ap-
proaches are based on the Baum–Welch algorithm to estimate
the HMM parameters. However a Viterbi alignment based seg-
mental clustering approach is more consistent with the decoding
process used in recognition. The advantages of the segmental

-means training procedure were presented in [18]. For Viterbi
training, it is important to note that once the state alignment is
given, computations for estimating each individual HMM state
become independent from each other. This makes it possible to
fully parallel the model training process on multiple CPUs, and
on large data set, the training time can be reduced from days to
hours.

Mismatch in data alignment is one of the major causes which
degrades the robustness and precision of acoustic modeling.
Since the decision tree clustering is based on the fundamental
assumption that tying of states will not change the alignment
of training data, the initial alignment based on untied triphones
with Gaussian state observation densities in the standard
Baum–Welch training may not represent correctly the final
models based on tied states and multiple-mixture distributions.
Thus the single-Gaussian model alignment may not be accurate
and can provide poor estimates for clustering [16]. In this sec-
tion, we present a new robust two-level clustering approach for
Viterbi based HMM training. It consists of an initial grouping
of rare triphones and a subsequent decision tree clustering for
state tying.

In addition to the data alignment problem, robust estimation
of rarely seen triphones is another critical issue. In the standard
method, a single Gaussian, untied triphone system is built first.
It is common that only the mean vectors are estimated from
data, whereas the variances are smoothed with the mono-phone

models. However, the single Gaussian, untied triphone system
forms the basis of the decision tree, and estimation errors intro-
duced in the single Gaussian, untied system often have a long
term adverse effect to the quality of the decision tree based state
clustering.

One of the issues in using Viterbi alignment in decision
tree based acoustic modeling is how to make a robust use
of the rarely seen triphone samples in the training data. In
Baum–Welch based parameter estimation, all possible paths
are considered, and it has a much stronger smoothing effect
on the parameters of those rarely seen triphones which have
only very few training samples in the training data. In Viterbi
alignment based segmental clustering approach, only the best
path is considered and parameter estimates of these rarely seen
triphones can degenerate very quickly with the decrease of
training samples. In order to make full use of the training data
and improve the robustness of the decision tree based state
tying, a two-level segmental clustering scheme is devised in
our approach. The first level segmental clustering is performed
before forming the single-Gaussian, untied system. It is to
cluster those rarely seen triphones into various types of gener-
alized triphones [13] according to their phonetic similarities, so
that the number of samples in each of the clustered generalized
triphones is above the minimum sample count threshold
required for the estimation of the sufficient statistics of the
initial, untied states. A low sample count threshold (e.g., five or
ten) can be used for a robust estimate of the single state mean
and diagonal covariance matrix. The rare triphones are grouped
by relaxing the triphone contexts [14]. First, the left contexts
of rare triphones are relaxed, and if there are not sufficient
samples in the training data to build these models, the right
contexts of the rare triphones are disregarded. The second level
clustering is a top-down decision tree based clustering of states
according to phonetic questions. The phonetic identity of each
generalized triphone from the first level clustering is defined to
be the intersects of the phonetic properties of all rare triphones
in the cluster.

The two-level clustering approach described above takes the
advantage of the robustness of generalized triphone at the stage
of forming a robust, single-Gaussian, untied system to improve
the quality of the subsequent decision tree. The final model is
still decision tree tied, in which state tying is determined solely
by the likelihood increase on the training data. This is very dif-
ferent from the conventional generalized triphones, where tying
is determined purely by the phonetic contexts. In addition, the
unseen triphones are always synthesized according to the deci-
sion tree without making reference to the generalized triphones.

One advantage of applying a segmental clustering based ap-
proach in decision tree state tying is that segmentation of the
training data is separated from the model parameter estima-
tion process. Therefore more accurate mixture Gaussian models
can be used to provide high quality data alignment, which will
lead to more precise estimates of the likelihoods used in the
decision tree construction and improve the quality of the final
acoustic models. In our approach the decision tree is refined
iteratively during the training process, which provides a more
precise estimation of state tying. In each iteration, the training
data is re-segmented by the Viterbi algorithm using the tied state



558 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 8, NO. 5, SEPTEMBER 2000

models generated from the previous iteration. The convergence
property of the segmental-means [18] approach ensures that
training data alignment will improve and converge with this it-
erative process.

For a set of states,, sharing one common Gaussian distribu-
tion and using Viterbi alignment, the auxiliary function is given
by

(4)

where all observation vectors with a state alignment
are considered. In this case the auxiliary function and the log-
likelihood are identical and for a single-Gaussian distribution it
is

(5)

where is the number of observation vectors assigned to the
states associated with node.

In the proposed segmental clustering algorithm, a mul-
tiple-mixture Gaussian distribution is estimated directly
for each tied state before realigning the training data. This
differs from many Baum–Welch based approaches, where
multiple-mixture distributions are obtained by iterative binary
splitting of each Gaussian density function (mixing-up) and
data realignment. The block diagram of the proposed two-level
segmental clustering training algorithm is illustrated in Fig. 1.
The algorithm terminates after a predetermined number of iter-
ations or if the likelihood gain falls below a certain threshold.

IV. GENERAL FEATURES INDECISIONTREEBASED ACOUSTIC

MODELING

In speech recognition, many nonphonetic features are used
to improve the resolution of the acoustic model and to obtain
high recognition performance. Examples of such features
include gender, speaker or speaker group identity, speaking
rate, channel and environmental conditions, ambient noise
level, etc. However, these features are not phonetic features
and it has been a problem of how to incorporate them con-
sistently with phonetic features in high-resolution acoustic
modeling. The common practice is to manually separate the
data according to the specification of the nonphonetic features,
such as gender, and retrain a model using only the data which
posses these features. This approach has two major problems.
First, it depletes the amount of available training data as the
number of nonphonetic features increases and puts a limit on
the number of nonphonetic features that can be incorporated in
the model. In addition, there is no data sharing between various
conditions. As a consequence, the model may become poorly
estimated and the performance of the model can degrade if
data become too sparse after splitting. Secondly, the feature
selection process is empirical and heuristic. Some nonphonetic
features may influence only certain part of the model. For
example, gender difference has more influence on vowels and

Fig. 1. Block diagram of two-level segmental clustering algorithm.

diphthongs but probably less on stops or fricatives. Usually all
model units are retrained based on the selected subset of data
and there is no consistent theoretical framework to incorporate
nonphonetic features.

Moreover, splitting of training data reduces the available
training samples for each acoustic model, which can lead to
poorly estimated models. For this reason, other specific models
beyond gender conditions are rarely used [15], [21]. One so-
lution to train specific HMMs for different features is through
model adaptation techniques such as maximuma posteriori
(MAP) adaptation [9]. In this approach, generic and condition
independent models are estimated first and then adapted to
the specific conditions. Although MAP adaptation is useful, it
does not change the state tying relations of the generic model.
The state tying relations of the generic model may not reflect
specific features in the adaptation data. Individual states in the
generic model may be separated or tied together according
to the likelihood estimation and occupation counts from the
complete, unconditioned data set, which may not be optimal
for specific conditions. This situation can become acute when
the properties of training and adaptation data are substantially
different.

For these reasons, it is preferable to use an automatic and uni-
fied approach to generate specific acoustic models for different
features in a data-driven manner. In [17] several linguistic and
phonetic features such as vowel stress were incorporated into
the decision tree clustering. In our approach, these features are
generalized to include any additional information which may
influence the configuration of the model in decision tree state
tying. This is achieved by incorporating various features into
the decision tree clustering based on a unified maximum like-
lihood statistical framework. Individual states for different fea-
tures are only separated if this leads to a significant increase
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in the likelihood on the training data. The additional informa-
tion about specific features are provided as tags to the deci-
sion tree clustering procedure. In our experiments, gender and
word boundary tags are used. The tagging procedure in our ap-
proach partitions the training data into specific subsets, based on
both the phonetic context and tagged features of interest, upon
which initial single-mixture Gaussian models are trained. Con-
sequently, every HMM state is associated with an appropriate
label, marking the specific conditions of its training data. The
question set of the decision tree is extended to also include ques-
tions regarding nonphonetic features. The nonphonetic features,
such as gender, channel condition, speaking rate, etc., are those
features which can not be derived from their phonetic contexts.
During the construction of the decision tree, the best (phonetic
or nonphonetic) question is selected to split the tree nodes ac-
cording to the likelihood criterion [17], [21].

The tagged nonphonetic features are used simultaneously
with the regular phonetic features in the decision tree clustering
process during model construction. Therefore, the decision tree
based model building is according to two types of knowledge
sources and there is no manual separation of the training data.
As a consequence, the model is built from the same set of
training data regardless the number of nonphonetic features
which we intend to incorporate. Thus, it solves the training
data depletion problem as in prior data separation approaches.
Moreover, these generalized features are incorporated in the
decision tree based state tying according to a unified and
consistent maximum likelihood framework. If separation of
data with specific conditions results in a maximum likelihood
gain among all other questions, separate HMM states will be
constructed for these specific conditions. If no question about a
particular feature is used on the path from the root tree node to
a particular leaf node, the associated tied state to that leaf node
is independent of that feature.

This data-driven approach prevents unnecessary data sepa-
ration and allows maximum data sharing among various condi-
tions. It constructs a minimum set of states for the given training
data and a pre-selected likelihood threshold. As a consequence,
the decision tree state tying is extended from tying states with
various phonetic contexts to tying states with generalized pho-
netic and nonphonetic (e.g., gender, position, etc.) features. This
leads to a significant increase in the amount of training samples
for condition dependent acoustic modeling and the robustness
of the condition dependent model is also enhanced. Moreover,
there is no hard limit on the number of conditions to which the
model can incorporate and the whole process is data driven. The
proposed tagging approach is very general and can be used for
many other features, such as speaker identity, age group, etc.

V. DECISION TREE CLUSTERING BASED ON

MULTIPLE-MIXTURE GAUSSIAN DISTRIBUTION

The quality of the decision tree based state tying depends on
the parametric form of the distribution used in evaluating the im-
purity function, which should approximate as closely as possible
the multiple-mixture Gaussian distributions used in the final
model. The conventional single-mixture Gaussian parameteri-
zation for cluster distributions in decision tree based state tying

only provides a very limited acoustic resolution and may be-
come inadequate to model the acoustic variability in the training
data. Moreover, the use of different likelihood functions in state
tying and decoding also introduces a mismatch and violates the
assumption that state alignments are unchanged for untied and
tied system. This suggests that using multiple-mixture Gaussian
distribution, instead of the single-mixture Gaussian, to evaluate
the likelihood function should be advantageous.

In this section we will present two methods to improve the
quality of decision tree clustering. The quality of the likelihood
estimates used during the tree construction is improved by the
usage of multiple-mixture Gaussian distributions for each set of
states. A -means based algorithm is described first, and then
we present another approach which is based on a novel use of
an optimal subtree to partition the acoustic space of a cluster
node.

A. -Means Based Multiple-Mixture Clustering

In this subsection we present an approach using the-means
algorithm to approximate multiple-mixture Gaussian distribu-
tions in decision tree state tying. The phonetic questions are
further used in the decision tree to partition the initial, untied
states into various subsets upon which the likelihood objective
function has to be evaluated. A-means clustering is utilized
within each partition to obtain the required mixture compo-
nents. The multiple-mixture distributions are consistently used
for the likelihood calculation from the initial untied states to the
final tied states.

First, we derive the decision tree objective function assuming
that all mixtures are already known. For a multiple-mixture
distribution with mixture components, the un-
observed data of the auxiliary function consists of the state and
mixture sequence in the model and the auxiliary function (1) be-
comes

(6)

where

(7)

denotes thea posteriori probability of a mixture component
given the observation. Using the mixture weights derived
from the Baum–Welch reestimation equations

(8)



560 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 8, NO. 5, SEPTEMBER 2000

the auxiliary function becomes

(9)

Applying basic properties of Gaussian distribution, we derive

(10)

In case of a segmental approach based on Viterbi alignment, the
auxiliary function simplifies to

(11)

In this formulation, the contribution of each mixture compo-
nent to is the term multiplied by the mixture
weight plus an additional entropy-like term
which takes into account the contribution of the mixture weights
to the log-likelihood.

In our implementation, up to Gaussian mixture compo-
nents are estimated for every untied state from the training data.
However, the number of mixtures can not be set too large since
the available data samples for the untied states vary highly from
state to state. During the process of decision tree state tying, the
multiple-mixture Gaussian parameterization is carefully main-
tained and applied to every possible node splitting according to
a set of phonetic questions. For this purpose, a-means clus-
tering is adopted in our approach to fit a-mixture Gaussian
probability density function for each tree node. The objective
of this clustering process is to find an approximate multiple-
mixture Gaussian distribution based on the multiple-mixture
Gaussian parameterization of the untied states in that tree node.
The process starts with seed mixture Gaussians and performs
a -means clustering algorithm to form the required-mix-
ture Gaussian parameterization for the node. The distance func-
tion used is the same log-likelihood metric used in decision tree
clustering and it measures the loss in likelihood by merging

two Gaussian distributions. This-means clustering process is
sub-optimal but it is very efficient for the purpose of providing
a multiple-mixture Gaussian distribution fitting for each tree
node encountered in decision tree based state tying. The auxil-
iary or log-likelihood function of the tree nodes in decision tree
based state tying is calculated based on this fitted multiple-mix-
ture Gaussian distribution without coming back to the original
acoustic training data.

One important property of this-means based approach is
that the structure of the phonetic decision tree is well main-
tained and therefore, it has the same prediction capability as the
decision tree generated from the single-mixture Gaussian ap-
proach. This is different from other data driven-means based
approaches, such as the CPA algorithm [5] used in [16]. In CPA
based approach, the locally optimal partitions (splits) are calcu-
lated based on the-means algorithm, but no phonetic questions
are used. This leads to a tree without phonetic properties and the
prediction power of the phonetic decision tree is therefore lost.
As a consequence, in order to construct unseen triphones, an ad-
ditional “pre-tree” is used in [16]. Our approach is based on pho-
netic questions to partition the states, and-means clustering is
utilized within each partition to obtain mixture components.
A different approach to evaluate the impurity function for mul-
tiple-mixture Gaussian distributions was presented in [8]. There,
a criterion to measure the overlap between Gaussian mixture
pdfs was developed and applied to semi-continuous HMMs. To
avoid extremely unbalanced trees, an additional normalization
of the criterion was necessary. Our criteria is based on the like-
lihood objective function and does not prefer unbalanced trees.

B. Multilevel Optimal Trees for Multiple-Mixture Clustering

In this subsection, we describe another decision tree based
state tying algorithm, which is based on a different estimate
of multiple-mixture Gaussian distributions in node splitting for
phonetic decision tree based acoustic modeling. The key idea
in this approach is to use an-level optimal subtree during the
node split, which is an extension of the conventional one-step
greedy CART algorithm [3]. In this new approach, the node
split is not determined by the improvement of the impurity func-
tion evaluated by the one-step splitting of that node as typical in
CART but by a multilevel optimal subtree derived from the can-
didate node. In this paradigm, CART algorithm has become a
special case, where the level of algorithm optimality reduces to
one. For every question to be evaluated a temporary subtree is
constructed. Depending on the depth of the binary subtree, the
state set of the evaluated node is splitted recursively in different
partitions. These partitions are then used to calculate a new im-
purity function based on a single Gaussian density per partition
[6]. For a two-level optimal splitting, two Gaussian densities are
calculated for each state subset and from the partitions
of the lookahead tree. In a three-level optimal splitting scheme,
four Gaussian densities are estimated for each binary outcome
of all evaluated questions. The principle of the multilevel op-
timal subtree approach is illustrated in Fig. 2. It shows the sub-
tree created for the three-level evaluation of a question in the
solid node . The subtree consists of a “yes” and a “no” branch
for the primary question with four terminal nodes (shaded) each.
These terminals subdivide the state sets and into four
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partitions each, for which a Gaussian density is calculated. A
separate subtree is calculated for each of thequestions.

Let denote an -level subtree, with root nodeand
a maximum level of . The log-likelihood of the -level tree

is defined to be

(12)

which is obtained by summing the log-likelihood over all its
leaves.1

The proposed -level optimal subtree based decision tree
growing algorithm consists of the following steps.

1) If is the root node, grow an -level optimal subtree
, not necessarily balanced, using the phonetic

questions. Split the node into nodes and .
2) Update the log-likelihood of and to be

and
(13)

where and are branches of the -level optimal
subtree . The updated log-likelihood of
and is modeled by -mixture Gaussians be-
cause they are the sum of single-mixture Gaussians from
the corresponding -level optimal subtree leaves.

3) For each current terminal tree nodewith cluster sample
count greater than the minimum sample count threshold,
grow an -level optimal subtree and split the
node into nodes and provided that

(14)

Update the log-likelihood , by per-
forming step 2).

4) The algorithm stops if there is no terminal node that sat-
isfies step 3) and the minimum sample count constraint.

It should be noted that both and are based
on multiple-mixture Gaussian distributions. This is because the
likelihood of the nodes is updated by its likelihood from the

-level optimal subtree, which is a combination of Gaussians
from the corresponding tree leaves. The proposed approach
utilizes an -level optimal subtree to obtain an estimate of
the multiple Gaussian distribution for node splitting. Although
the -level optimal subtree is derived from the
phonetic questions and using single-mixture Gaussians of
the untied states, the leaves of the-level subtree
introduce a multiple-mixture Gaussian parameterization of the
log-likelihood of the tree node. In addition, the multiple-mix-
ture Gaussian parameterization of obtained from the
proposed approach is honest in the sense that all its mixtures
are supported on the data partition by the phonetic questions
of the decision tree and it will not give an over estimate of

. This is different from the previous approach, where
the multiple-mixture distributions for the potential splits are
derived from a -means algorithm without any constraints
regarding phonetic properties. The conventional one-level

1We use the log-likelihood instead of the auxiliary function in the following
discussion.

Fig. 2. Subtree construction for the evaluation of a question splitting the solid
node.

greedy tree growing algorithm is again a special case in the
proposed approach when optimal subtree level .

However, there is a fundamental difference between the pro-
posed approach and the look-ahead search technique used in
decision tree based state tying [4], [11], [12]. The look-ahead
search is to find a more accurate estimate of the log-likelihood
increase when split node. In other words, it uses a refined esti-
mate of and but does not change the parametric
distribution of nor the value of . In the proposed ap-
proach, a -level subtree is used as a mean to introduce honest
multiple-mixture Gaussian parametric distribution for node,
which is used consistently for all related log-likelihood esti-
mates in node splitting, , and .

Although the greedy tree splitting algorithm based on single-
mixture Gaussian distribution may not be accurate enough, it is
nevertheless computationally quite efficient. For single-mixture
Gaussian, the log likelihood of a cluster at tree node
can be calculated by using the already available sufficient sta-
tistics from the untied state clusters without additional access
of the data. As a consequence, the phonetic decision tree based
state tying only constitutes a small portion of the computation
in acoustic model building [19]. This may not be the case when
multiple-mixture Gaussian distributions are used in node split-
ting. Although the proposed approach does not make a direct
estimation of the multiple-mixture Gaussian distribution in de-
cision tree state tying, growing an-level optimal subtree can
become expensive. Given a set ofphonetic questions, finding
a two-level optimal subtree involves in an order of

operations of node splitting. The algorithmic com-
plexity grows exponentially with the subtree level, making
it infeasible for application in large vocabulary speech recogni-
tion.

In order to reduce the algorithmic complexity, we propose a
scheme that is based on caching the topbest second-level
questions of the previous search in a short-list table [6]. The
short-list of the best second-level phonetic questions associ-
ated with left and right branches used to construct the-level
optimal subtree is attached to the new children nodes

and . In the future split, the -level subtree constructed
for and will be restricted to questions in the short-list.
For two-level optimal subtree, this reduces the algorithmic com-
plexity of doing node splitting from to , where
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is the depth of the short-list. This approximation is reason-
able in two senses. First, the-level subtree constructed with
this caching scheme is always superior than the subtree con-
structed from one-step greedy algorithm. Second, the top
questions for and derived from the -level optimal
subtree construction of their parent nodecontain at least the

best level questions. This provides a good coverage of
the questions used for the-level optimal subtrees of and

. The use of the caching scheme makes it practical to apply
the proposed -level optimal subtree approach for phonetic de-
cision tree based state tying in large vocabulary speech recogni-
tion tasks. In addition, other more aggressive caching schemes
can also be used which will lead to further complexity reduction.
In our speech recognition experiments, we observe a significant
speed-up without recognition performance degradation.

VI. EXPERIMENTAL RESULTS

The performance of the proposed decision tree clustering
algorithms was evaluated on different experiments for theWall
Street Journal(WSJ) task. Twelve mel-cepstral coefficients
and the normalized energy plus their first and second order
time derivatives were used as acoustic features. The cepstral
mean for each sentence was calculated and removed. All
HMMs have three emitting states and a left-to-right topology.
Training of the acoustic parameters was based on the proposed
two-level segmental clustering algorithm for decision tree state
tying. Single-mixture models were estimated for all triphones
exceeding a sample count threshold in the training data. A
minimum count threshold of five and ten examples was used in
our experiments, but no significant performance difference was
noted for these thresholds. Rare triphones with occurrences
below the minimum count threshold were grouped by relaxing
first the left context and then the right context. A phonetic
decision tree tying was used to cluster equivalent sets of context
dependent states and to construct unseen triphones. The final
triphone HMMs were built based on the tied states from the
clustering. The number of mixtures for each tied state depends
on the amount of training data assigned and varies from four
to 12. Typically, only two to three iterations of the two-level
segmental clustering algorithm were performed to obtain high
quality acoustic models. Decoding was done using a one-pass

-gram decoder [26], in which the search was conducted on
a layered self-adjusting decoding graph using the cross-word
triphone models. The standard SI-84 and SI-284 training data
sets were used to train the WSJ models. The pronunciation
lexicon was generated automatically using a general English
text-to-speech system (41 phones) [22]. The language models
used in the experiments are the standard bigram and trigram
language models provided by NIST for the WSJ corpus.

A. Two-Level Segmental Clustering

Even for large training data sets the number of actually ob-
served triphones is only a small fraction of the total number
of possible triphones. For a phoneme inventory of 41 phones
plus two additional silence models, almost 80 000 possible con-
text-dependent phones exist. In Table I, the number of triphones
exceeding different minimum frequency thresholds of one, five,

TABLE I
NUMBER OF TRIPHONES EXCEEDING

DIFFERENTFREQUENCYTHRESHOLDS INWSJ DATABASE

TABLE II
WORD ERROR RATES FOR NOV92 WSJ EVALUATION (SI-84,

GENDER-INDEPENDENTMODELS)

ten, and 30 are listed for WSJ SI-84 and SI-284 training data
sets.

In the SI-84 training data set (7200 sentences, 15 h of
speech), only 16 500 triphones occur in the training data.
Among them, 8600 triphones have more than ten occurrences,
whereas about 7900 triphones have less than ten examples.
About 22 500 different triphones are observed in 60 h of
speech for the SI-284 data, but only 14 400 have more than
ten examples. In the first level clustering of our approach, rare
triphones with less than five or ten examples are clustered into
groups of generalized triphones to increase the robustness of
the estimates for the untied states. The second level decision
tree clustering is performed on the first level clusters. After
the decision tree based state tying, the triphone model based
on SI-84 training data consist of 3447 individual states tied
through various contexts. It has a total of 37 000 Gaussian
distributions. The average number of mixtures per state is 10.9.
Evaluations on the WSJ tasks were performed on the official
NOV92 (si_et_05, si_et_20) and NOV93 (si_et_h1) test sets
for the closed 5K and open 20K vocabulary. The results are
obtained based on a one-pass frame synchronous decoding
without adaptation. The word error rates for the NOV92
evaluation of the gender-independent (GI) WSJ system trained
on the SI-84 training data are tabulated in Table II.

In the second experiment, the WSJ SI-284 data was used in
the training of the acoustic models. About 8100 of the 22 500
observed triphones occur less than ten times in the training data
and are grouped into 1029 generalized triphone clusters to en-
sure robust estimates for the state clustering. After the pho-
netic decision tree clustering, 8006 individual states with about
99 000 Gaussian distributions (an average of 12.4 mixtures per
state) were estimated. The results for the NOV92 and NOV93
tests using this model are listed in Table III. It is shown, that
a low 3% word error rate in the 5k vocabulary NOV92 eval-
uation for gender-independent models is achieved. The error
rates for the 20k vocabulary evaluations are between 9.8% for
NOV92 and 13.4% for the NOV93 test, based on a trigram lan-
guage model. The 1.8% out-of-vocabulary words have a sig-
nificant contribution to the word errors in this open vocabulary
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test. These low error rates for both the 5k and 20k evaluations
indicate the high performance of the proposed two-level seg-
mental clustering approach, and from now on, the model built
by two-level segmental clustering algorithm was used as a base-
line system for the remaining experiments in this section.

B. Gender-Dependent Models

The experiments in this subsection are concentrated on the
use of generalized features in phonetic decision tree state tying.
We first present results of the proposed unified maximum
likelihood approach to generate gender-dependent acoustic
models. We compare the proposed approach with approaches
based on MAP adaptation and training of separate gender
specific models. Since gender identification is not the issue
of this paper, we assume the genders of the test speakers to
be known. Table IV tabulates the word error rates of different
gender-dependent acoustic models trained on the WSJ-84
dataset using a trigram language model.

The first set of models (sGD) was trained following the con-
ventional practice of splitting the training data into male and fe-
male subsets upon which two completely independent HMMs
for both genders were built. State tying for male and female
models were derived from separate decision trees constructed
from gender specific subsets of data. It resulted in two models
containing 2633 individual states for male and 2622 individual
states for female. Comparing to Table II, a modest word error
reduction of about 5% was observed. Adaptation of gender-in-
dependent acoustic models to gender-dependent male and fe-
male models using MAP adaptation techniques resulted in two
model sets (mGD) with 3447 states each. It should be noted that
MAP adaptation does not affect the state tying relationship in
the generic, gender-independent seed model. MAP adaptation
provides a more robust estimates for triphones and results in an
error rate reduction comparing to the baseline sGD models. The
last row in Table IV is the result of the models obtained from the
proposed tagged decision tree clustering (cGD) approach using
generalized features. The algorithm decides, based on the data,
for every state of all triphones whether the state should be mod-
eled separately for male and female or a joint state for both gen-
ders should be used. The total number of states in cGD–HMMs
is 5488. About 420 of these states are shared between male and
female models, which reduces the total number of individual
states slightly below the total of 5255 for the sGD–HMMs. The
performance improvement over gender-dependent sGD-models
is between 4% and 8%, and the relative error rate reduction
over gender-independent models is between 9% and 12% based
on the two evaluation test sets. In Table V, results based on
HMMs trained from SI-284 data set are tabulated. The automat-
ically clustered gender-dependent cGD-HMMs again perform
best among other approaches. The effect of training data frag-
mentation may become more important for smaller databases,
where any data splitting usually results in reduced performance.
Data-driven splitting and data sharing between conditions can
help to improve the robustness of condition-dependent models
in these cases.

An analysis of the decision tree used in constructing
cGD–HMMs shows a phonetically reasonable behavior. States
for vowels and diphthongs (except for the schwa sound, /aa/)

TABLE III
WORD ERRORRATES FORNOV92 AND NOV93 EVALUATION OF THE WSJ TASK

(SI-284, GENDER-INDEPENDENTMODELS)

TABLE IV
SI-84 WORD ERRORRATES FORDIFFERENTGENDER-DEPENDENTACOUSTIC

MODELS WITH TRIGRAM LM (sGD: SPLITTED TRAINING DATA, mGD: MAP

ADAPTED MODELS, cGD: TAGGED DECISION TREE CLUSTERING)

TABLE V
SI-284 WORD ERRORRATES FORDIFFERENTGENDER-DEPENDENTACOUSTIC

MODELS WITH TRIGRAM LM (sGD: SPLITTED TRAINING DATA, mGD: MAP

ADAPTED MODELS, cGD: TAGGED DECISION TREE CLUSTERING)

are mostly separated for males and females, while stops and
fricatives share up to 34% of their states for both genders. This
appears to be consistent with the dependency of phones on
vocal tract characteristics. The gender questions are competing
in the decision tree with other questions about the phonetic
contexts. They are used only if it leads to a maximum increase
in the likelihood among all other questions and the minimum
sample count constraint is satisfied. A leaf state is shared
between genders if no gender specific question separating the
male and female data was used in the path from the root tree
node to that leaf tree node. Phonemes with more than 10%
state sharing between genders in various contexts are listed in
Table VI.

Fig. 3 illustrates the frequency of usage of gender questions
for different depths of the decision tree. The average depth of the
tree in this experiment was 11.4. Most of the gender questions
are used in the upper part of the trees. This is an evidence that
for many phones strong gender-dependent variations exist and
gender-dependent acoustic modeling is useful. The proposed
tagging approach to incorporate general features into phonetic
decision tree tying detects these dependencies automatically and
generates individual states if useful.
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TABLE VI
RATE OF STATE SHARING BETWEENGENDERS FORSOME PHONEMES

Fig. 3. Frequency of usage for gender questions over the depth of the decision
tree.

C. Word-Boundary Dependent Models

The proposed tagging scheme for decision tree clustering was
also applied to modeling word-boundary dependent HMMs.
While some of the context dependent models (silence and noise
models) occur only at word boundaries, most of the triphones
appear in both inter- and intra-word positions and exhibit
various degrees of dependencies on their positions. Moreover,
the number of occurrences of these word-boundary dependent
triphones in the training data also varies drastically, and some
units may not have enough samples to be modeled separately.
Table VII depicts the word error rates for position-dependent
(POS–DEP) HMMs trained on WSJ SI-84 with the proposed
generalized clustering. Results for position-independent models
(POS–IND) are also included for comparison.

The use of position-dependent SI-84 models leads to a 10%
word error rate reduction for gender-independent (GI) HMMs
and a 5% word error rate reduction for gender-dependent
(mGD) models. The SI-84 systems achieve 95.8% word accu-
racy for WSJ-5k and 88.8% word accuracy for the WSJ-20k
task. The total number of individual states for the position-de-
pendent HMMs increased about 30% from approximately 3400
to 4400. For the SI-284 system, a slight error rate reduction
was obtained for the gender-independent 20 k task and a more
significant 10% word error rate reduction was observed for the
gender-dependent models over the baseline results. Table VIII
illustrates the average percentage of state sharing between
inter- and intra-word models for different phonetic classes.

The number of states shared between inter- and intra-word
models varies from 30% for the /dh/ sound and 100% for rare
phones like /zh/. These rare phonemes do not have sufficient ex-
amples in the training data to allow a state split into position-de-
pendent variants of the same phoneme. Some vowels like /eh/
seems not much affected by word boundaries and share up to
88% of the states. The proposed tagged decision tree clustering
approach automatically balances the need to generate separate
position-dependent states for improved acoustic resolution and
the availability of training data for robust model parameter esti-
mation.

TABLE VII
WORD ERRORRATES POSITION-DEPENDENTHMMs (TRIGRAM LM)

TABLE VIII
SHARING OF STATES BETWEEN POSITION-DEPENDENTMODELS FOR

DIFFERENTPHONEME CLASSES

D. Multiple-Mixture Gaussian Based Tree Node Clustering

In this subsection, we present some experimental results of
using multiple-mixture Gaussian distributions in decision tree
node clustering. Between one and four mixture distributions
were estimated for each untied state depending on the amount of
available data in the WSJ SI-84 training set. For every examined
node in the decision tree, the-means algorithm was applied to
calculate a four mixture distribution. The auxiliary function ac-
cording to (11) was used as objective in node splitting. A de-
cision tree with 3719 leaves was grown based on this objective
function and unseen triphones were constructed in a standard
way. The average log-likelihood for the training data increased
from 99.69 to 98.01 compared to the standard single-mix-
ture likelihood calculation. Fig. 4 illustrates the relative likeli-
hood gain for some phonemes when multiple-mixture proba-
bility density functions were used in node splitting.

The biggest gain by the improved acoustic modeling is noted
for vowels (2.3%), while the likelihood for fricatives increases
only about 1.0%. The average improvement is 1.7% over all
phonemes. This shows that the four component mixture den-
sities fit the data better than the single Gaussian used in the
standard decision tree. We expect this improved acoustic mod-
eling in the decision tree clustering to increase the quality of
the state tying. HMMs based on the proposed multiple-mixture
clustering were constructed using WSJ-SI84 training data, and
the model was evaluated on WSJ-92 evaluation test sets. The
word error rate for the 5k vocabulary task was slightly reduced
from 5.0% to 4.8% and for the 20k evaluation the error dropped
from 12.8% to 12.5%. This shows how the improved acoustic
modeling during the decision tree clustering leads to better state
tying and increases the model accuracy.

E. Multilevel Optimal Subtree Approach

Experiments of using the proposed mutli-level optimal sub-
tree algorithm for state clustering were also performed. A two-
level optimal subtree, based on a short-list of top questions, was
constructed, and multiple-mixture Gaussian distributions were
estimated from the optimal subtree. The average log-likelihood
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Fig. 4. Likelihood increase in percent for some phonemes.

for the training data increased from99.69 to 98.65 com-
pared to the standard likelihood calculation. In order to verify
the short-list based caching scheme, an experiment was con-
ducted using a short-list based on the top-30 questions and the
results were compared with a short-list of size , which
is a complete list containing all possible questions. The rank of
the best two-level questions during the subtree construction was
recorded. First, it was observed that questions used in tree con-
struction are quite different between the proposed multilevel op-
timal subtree approach and the conventional one-level tree node
splitting scheme. In 40% of the cases, the two-level optimal sub-
tree algorithm and the conventional one-level tree splitting algo-
rithm selected identical questions. But for the remaining 60% of
cases, the best questions selected by the two approaches differ.
Secondly, the top-30 short-list provided a 96% coverage of the
best questions used in the subtree algorithm based on the com-
plete list, and only in 4% of the nodes a suboptimal question was
chosen because the best two-level question was not in the top-30
short-list. This justifies the usage of the short-list scheme for the
two-level optimal subtree construction to reduce the amount of
required computation for the likelihood evaluation of the tree
nodes. The word error rates for gender-independent and MAP
adapted gender-dependent HMMs using optimal subtree based
state clustering are given in Table IX.

The highest error rate reduction of about 10% based on the
two-level optimal subtree based clustering was observed for the
SI-84 trained gender-independent HMMs. For gender-depen-
dent models and SI-284 training data the word error reduces
about 3%–4%. It is interesting to note that the performance
differences between gender-dependent and gender-independent
models for the two-level optimal subtree based state clustering
is much smaller than those using the standard decision tree clus-
tering method. The two-level optimal subtree splitting algorithm
clearly helps to build an improved decision tree and to enhance
the quality of the acoustic models. Increasing the levels of the
optimal subtree in node splitting beyond two levels did not pro-
vide additional performance improvements in our experiments.
Our study indicates that multilevel optimal subtree building pro-
cedure can be made computationally feasible and it can signif-
icantly improve the robustness of the model. The experimental
results provide the first experimental evidence that multilevel
optimal tree building procedure beyond CART is advantageous
in large vocabulary continuous speech recognition.

VII. SUMMARY

In this paper, methods of improving the robustness and
quality of acoustic modeling using decision tree based state

TABLE IX
WORD ERROR RATES FORTWO-LEVEL OPTIMAL SUBTREE BASED

CLUSTERING (TRIGRAM LM)

tying were described. A two-level segmental clustering ap-
proach was devised which combines the decision tree based
state tying with agglomerative clustering. Under this approach,
rarely seen triphones in the training data are first clustered into
generalized triphones. These generalized triphone clusters are
then used in the second level decision tree based state tying to
improve the robustness and coverage of the decision tree based
acoustic modeling. In order to incorporate various features in
the decision tree clustering, a unified maximum likelihood
framework for generalized phonetic and nonphonetic features
was proposed. A tagging scheme was used to tag various
features of interest and the selection of these features in the
state clustering was determined by the log-likelihood increase
instead of heuristically separating training data into various
conditions. In contrast to the conventional methods which often
lead to training data depletion, the proposed approach makes
more efficient use of the entire training data and allows training
data sharing across various conditions. As a consequence, the
decision tree state tying is extended from tying states with
various phonetic contexts to tying states with generalized
phonetic and nonphonetic (e.g. gender, position, etc.) features.
This leads to a significant increase in the amount of training
samples for condition dependent acoustic modeling and the
robustness of the condition dependent model is also enhanced.
Moreover, there is no hard limit on the number of conditions
to which the model can incorporate and the whole process is
data driven. Finally, two methods based on multiple-mixture
Gaussian parameterization were described and applied in
large vocabulary speech recognition to improve the evaluation
function in decision tree state tying. One method is based
on a -means fitting approach and the other one is based on
an application of optimal multilevel subtree. Both methods
are consistent with the structure of the decision tree, and
therefore, the prediction power of the decision tree is well
maintained without the need of a separate tree for unseen
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triphone generation. The proposed approaches were tested on
the Wall Street Journal corporation and compared with other
known approaches. The efficacy of the proposed approaches
were verified and a significant improvement in model quality
and recognition performance was obtained. The application
of the generalized decision tree to word-boundary dependent
acoustic models for example reduced the word error rate for
the 20k-WSJ test data up to 10% and two-level optimal subtree
based clustering resulted in about 5% error reduction for the
same test data.
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