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Abstract—We propose a novel speech understanding strat- ~ When we review most of the spoken dialogue systems, their
egy based on combined detection and verification of seman-task specifications are highly well-defined, so that necessary
tically tagged key-phrases in spontaneous spoken utterances.inqrmation for the system is described with a definite set of

Key-phrases are defined in a top-down manner so as to constitute . . . e
semantic slots. Their detection directly leads to robust under- task-related slots. Their typical examples include form filling

standing. A phrase network realizes both a wide coverage and a Or information retrieval by voice. Therefore, speech under-
reasonable constraint for detection. A subword-based verifier is standing problem can be formulated as extracting or detecting

then incorporated to reduce false alarms in detection and attach the task-related slots from unconstrained utterances. These

conf!dence measures of the_ detected phl_'ases. This set of phrasos'slOts are usually defined with keywords or key-phrases such
confidence measures, when incorporated in a spoken dialogue sys-

tem, forms a basis for designing intelligent speech interfaces that @S time and place. One of the design goals 8éxible speech
accept only verified key-phrases and reprompt users to clarify understandingsystem should be to detect the semantically
unspecified or unrecognized portions. Several forms of confidence significant portions and reject theut-of-grammarand out-
measureds based ﬁ’“ sul;wc:r%—levefl_ }gséstare l'I”V‘teSé'%ated- Tlheof-taskportions of the input utterance. Utterance verification
proposea approacn was tested on fie ata collected rom real- . . P . _
world trial applications. The combined detection and verification technique enhst_nces this property by giving Confldenc;e mea
strategy drastically improves the accuracy in handling out-of- SUres to recognition _results. Cor_n_bmgd with aerX|bIe_d|angue
grammar utterances over the conventional decoding approaches manager, the detection and verification framework will realize
while maintaining the performance for in-grammar utterances.  partial understanding and disambiguation of unclear portions
Index Terms—Dialogue systems, key-phrase detection, speechthrough the subsequent dialogge ses;ion. .
recognition, speech understanding, utterance verification. One of the most comprehensive projects on spoken dialogue
processing so far was the Air Travel Information System
(ATIS) project sponsored by ARPA [2]. In such a task where a
_ lot of data have been collected, the use of a statistical language
N RECENT years, several spoken dialogue systems basgédel (n-gram) is typical and can be effective. Moreover,
on continuous speech recognition have been evaluatedsttistical concept modeling [3], [4] has been studied and
real-world applications. These systems use deterministic finde@monstrated to be a viable way to model semantics in
state grammars to accept and decode typical user utterang@gnain-restrictive tasks. In actual situations, however, it is
because there are no data available to train statistical Iajt realistic to assume that a large amount of dialogue data are
guage models for specific tasks. The use of a rigid grammgjailable for training such models for every single application.
represented by a finite state machine is reasonably effectiMge effort in data collection and labeling is often expensive,
for typical in-grammarsentence patterns, i.e., sentences thglor intensive, and the results are potentially error-prone
can be described by the finite state grammar. However, 43d sometimes undesirable. Thus, the prevailing statistical
real-world environments, we have observed wide utteranggguage modeling in the ATIS evaluation cannot be applied
variation inherent in a large user population that is not covergqecﬂy to many of the real-world applications.
by the task grammars, even though they had been tunedrherefore, most of the real-world dialogue systems use finite
manually by system developers during the trial period. late grammars for the specific tasks. The recognizer tries to
addition to the desired information, these samples usuajiyaich or decode the whole utterance input into possible word
include extraneous words, hesitations, repetitions, dlsfluerquuences accepted by the grammar. Usually the grammar
and o_ther unexpected expressions [1]. Most of such utterangggid realize both a wide coverage to accept a variety of
contain some key-phrases that are task-related and mayghfiences and a small perplexity to achieve high recognition
sufficient for partial or full understandlng..Other samples arformance. These requirements become very difficult to
not relevant to the task and should be rejected. satisfy when a wide variety of spontaneous utterances need
Manuscript received December 18, 1996; revised January 29, 1998. Ttds be coped with in real-world environments. For example,
work was performed while T. Kawahara was visiting Bell Laboratories ify gn apparently simple subtask of recognizing responses to
1995-1996. The associate editor coordinating the review of this manuscrint @ . " .
and approving it for publication was Prof. Joseph Picone. tRe prompt “What is your drop-off date?” in a car reservatlon_
T. Kawahara is with the School of Informatics, Kyoto University, Kyototask, some users include unexpected phrases such as “I will
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involves more complex queries. Tuning the task grammarsgtraints. It can be viewed that the detection module proposes
cover all possibilities would be an endless effort. The problepossible theories for the system to explore in subsequent
originates from the framework of decoding that assumes a rigidocessing. Since many theories are still likely as the result
sentence-level grammar and applies the uniform constraint @ihpartial matching, a key-phrase verification module is incor-
the whole input. The inclusion of filler models in the definitiorporated to select reliable theories and eliminate false alarms.
of a finite state grammar works for limited samples that closehfter this preliminary hypothesis pruning, the remaining the-
follow the rigid grammar. But it does not solve the problenories are parsed and merged to form valid sentences as well
fundamentally. as their semantic frame representations.

As a more robust strategy, word spotting approaches [5],In real-world spoken dialogue processing problems where
[6] have been studied. They are classified into two approachbe definition of the task and the vocabulary is always evolv-
in terms of the modeling of non-keyword parts. The first ig, portability of the system is significant. In some tasks
the use of a large vocabulary continuous speech recognit&uch as making inquiries on movie titles, the vocabulary of
(LVCSR) system (e.g. [7], [8]). It attempts to incorporate asiovie titles changes regularly. Therefore, not only acoustic
much lexical and pragmatic knowledge as possible. Howevenpdels for recognition but also verification formulation should
it does not model the ill-formed phenomena such as hesitatidresvocabulary-independent subword-based. Moreover, the lan-
and repairs, which are often found in spontaneous speeghage model has to be portable, since writing rigid sentence
The approach based on LVCSR is also not a realistic solutigrammars takes much human effort and training statistical
both in performance and efficiency, especially in cases wharmdels needs huge data collection. Specifying keywords or
the possible vocabulary is not well specified or the statistick¢y-phrases is much easier for system designers, as they can
language model for the subtask is not reliably trained. Tiodten be automatically derived from the task specifications.
second word spotting approach is to use a general acoustic Slifile set of key-phrases will accept a wider variety of utterances
model (e.g. [9]) or a parallel network of context-independefitan sentence grammars can. Especially in dialogue-based
phone models (e.g., [10]). However, such simple modedystems, it is possible to set up subtask grammars according
are usually not sufficient to characterize non-keyword everitsthe dialogue state and apply them to a large-scale task.
especially when the size of keyword vocabulary is over a The rest of the paper is organized as follows. We first present
few dozen. The keyword models are easily matched with tlae overview of the proposed detection and verification system
irrelevant portions, causing so many false alarms that canmoSection Il. Key-phrase detection and key-phrase verification
be easily handled with subsequent processing. Most of taee described in detail in Sections Il and IV, respectively.
past works tune the keyword models and the sink model ligsues related to sentence parsing and verification are discussed
a vocabulary-dependent manner (e.g., [10]), sacrificing tire Section V. Experimental results on several subtasks are
advantage of subword-based recognition. While whole-worteported in Section VI. Finally we summarize our findings in
based keyword spotting is possible, the approach has ofigction VII.
proven effective in very small vocabulary tasks (e.g., [9]).

In this paper, we propose @mbined detection and veri- Il. DETECTION AND VERIFICATION STRATEGY
fication approach that realizes flexible speech understandinglt is becoming increasingly clear that an automatic speech
We first extend the conventional keyword spotting framewotiecognition system needs to have both high accuracy and a
to key-phrase detection. It is well known that longer speedhtiendly interface that allows a user to speak naturally and
units such as phrases are more stable than words for spotpgontaneously without imposing a rigid format. Our strategy
even when they are embedded in extraneous speech. Kiey-handling such spontaneous utterances, particularly when
phrases are also semantic units that represent partial tagkatemplating domain-specific services, is to focus on a finite
related meanings in a sentence. set of vocabulary words most relevant to the intended task and

The idea of extracting such semantic units from a complexake use of the technology ofterance verificatioifUV). The
sentence is consistent with the similar findings about parteystem then detects and identifies the in-vocabulary keywords
parsing in the ATIS project. Severéémplate matchingal- and key-phrases that may be embedded in the fluent speech
gorithms [11], [12] androbust parsingalgorithms [13], [14] utterance, while rejecting irrelevant portions.
oriented toward parsing ill-formed sentence fragments wereThe simple word spotting scheme that uses small templates
found quite effective in handling some disfluencies in the ATI&an be easily triggered by local noise or confusing sounds.
task. Most of these approaches, however, assume that a wdsihg a longer unit is advantageous because it can incorporate
sequence (text) has been obtained by some speech recognirme distinctive information and realize stable acoustic match-
(using V-gram models). It is very difficult to realize effectiveing both in recognition and in detection. Therefore, one major
postprocessing with the current LVCSR systems unlessfeature in our strategy is to use key-phrases as the detection
large word lattice with focus on keyword and key-phrasamit in addition to using keywords. A key-phrase consists of
is generated. We need precigé-best list for key-phrases one or a few keywords and functional words. For example, “in
with acoustic confidence, but we can merge non-keywords the& morning” for a time period, and “in downtown Chicago”
garbage. A simple deep word lattice will generate too marigr a local area. In most situations, they are uttered without
irrelevant hypotheses for speech understanding. a break even in spontaneous speech. Furthermore, they are

Our strategy detects such key-phrases directly from speeahjged with conceptual information. In fact, we define our
and performs optimization jointly with the semantic conkey-phrases so as to correspond to semantic slots such as time
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and place. Unlike bottom-up phrases defined by Ahgram

- key-phrase sentence sentence
scheme [15]-[17], our top-down phrases are directly mapp verification verification [ semantic
into semantic representations. Thus, detection of them directly frame
leads to robust understanding. m ‘agg>\

The other main feature is to incorporate utterance verifi-mede phrases
cation technique to realize ideal detection mechanism that key-phrase sentence
does not match irrelevant portions of speech without UsinGspeeh | detection |7 1 parsing [T "

large-vocabulary non-keyword knowledge. One of the most @ %
significant problems in the conventional recognizers is that
they do not know how confident their outputs are. Therefore,
we have been studying utterance verification methods that
perform hypothesis tests on the recognized results and give
them confidence measures [17]-[20]. Based on the confidenc&or vocabulary-independent recognition, universal context-
measures, the system can reject utterances that contain sugependent subword units are selected and trained without
fluous acoustic events such as out-of-vocabulary words, anfluence of a specific vocabulary set. The verification is also
form of disfluency and ambient sounds, as well as invali@rmulated in a subword-based manner. Both phrase verifica-
inputs that have no key-phrases. In this work, we integrate then and sentence verification are carried out by combining
verification technique into detection in order to select reliablikelihood ratio scores of constituting subwords. Moreover,
detection and eliminate improper matching or false alarms. TABrase subgrammars are also easily constructed by specifying
detected key-phrase hypotheses are passed into verificatltg values of semantic slots that the system tries to extract.
module for validation. Thus, system designers will not have to precisely predict what
The keyword or key-phrase verification is different from th&inds of expressions are used including filler phrases and
conventional utterance verification, because it is not the fir¥traneous words.
decision. False rejection of correct hypotheses is critical, whilge
accepted false alarms can still be eliminated in the subsequeéen
sentence parsing and verification process. Furthermore, sincéhe baseline system used for training and recognition is
verification of phrases is done with partial input of feweflescribed in detail in [22]. Input speech, sampled at 8 kHz,
subword segments than the whole utterance verification, St initially preemphasized1 — 0.9527") and grouped into
demands more reliable confidence measures. frames of 240 samples with a shift of 80 samples. For each
Finally, in order to understand the whole utterance, wgame, & Hamming window is applied followed by a tenth-
perform sentence-level processing that combines detected K¥gler linear predictive coefficient (LPC) analysis. A liftered

Fig. 1. Outline of the strategy.

tBaseline System and Task-Independent Acoustic Modeling

phrases and verifies the end resul. 12-dimensional LPC-derived cepstral vector is then computed.
The first and second time derivatives of the cepstrum are also
A. Overview of the System computed. Besides the cepstral-based features, the log-scaled

Thus, our overall strategy consists of the following Stepgpergy normallzed by the peak and its first and second order
time derivatives are also computed. Thus, each speech frame

as depicted in Fig. 1. ;
1) Key-phrase detectiorA set of key-phrases are detectetljS represented by a vector of 39 features.
) Key-p y-p The lexical representation of each vocabulary entry is au-

usmga;et of phr_ase subgrammars Specific to the SySt&ﬂﬁatically generated using the Bell Labs Text-to-Speech
pr_ompt n the dlalogue_. The key—phrf_slses are lapel apheme-to-phoneme transcription rules. No hand-tuning is
W|th.semant|c tags, which are useful in sentence-lev s]erformed. Recognition is accomplished by a frame syn-
parsing. . chronous beam search algorithm [22] to determine the se-
2) Key-phrase verificatianThe detected key-phrases argence of words that maximizes the likelihood of the given
verified and assigned confidence measures. The procggsrance. A forward-backward-best search algorithm [23]
attempts to eliminate false alarms. Itis a combination ¢ 450 used to generate multiple word string candidates.
subword-level verifications that usti-subword models  |nstead of designing a task-dependent speech recognition
to test the individual subwords of the recognized result§ystem that only works well for a particular task, we aim
3) Sentence pgrsing'he verified key-phrase gandidates argt having a system that works well for a wide range of
connected into sentence hypotheses using task-speqiigks without re-training acoustic phone models for each new
semantic knowledge. A stack decoder is used to seafiglk. One way to accomplish this is through discriminative
for the optimal hypotheses that satisfy the semantigaining of task-independent (TIND) phone models. The reader
constraints [21]. is referred to [24] for an in-depth discussion of TIND training.
4) Sentence verificatiorThe best sentence hypotheses are The data base used for task-independent (TIND) training
verified both acoustically and semantically for the fingk a set of 12000 utterances of general phrases of American
output. English collected by AT&T over long distance public sub-
The framework will realize not only flexible understandscribers telephone network (PSTN). More than 2,000 talkers

!ng but also portable and general one, that is VocabU|ary1The data base was designed and recorded by R. Sachs of the AT&T Voice
independent and even task-independent. and Audio Processing Architecture Department, Holmdel, NJ, in 1993.
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each speaking up to seven phrases were included. Each pheagkan acoustic sink model is embedded between key-phrase
was semantically correct with length ranging from two to fourecurrences. Simple recurrence, however, causes ambiguity.
words. The selection of the phrases was based on a gre€dy example, if we allow any repetitions of the days of the
algorithm such that a maximum triphone coverage is obtainedionth, we cannot distinguish between “twenty four (24)”
Over 6,000 distinct words were included in the recording. and “twenty (20)% “four (4).” Therefore, we incorporate

In order to broaden the context coverage to deal with albnstraints that inhibit impossible connections of key-phrases.
unknown tasks and maintain the performance advantage of thés a whole, the detection unit is a network of key-phrase
context-dependent (CD) units over context-independent (Gl)bgrammar automata with their permissible connections and
units in all experiments, we use the set of right CD (RCDOjerations. The constraint achieves wider coverage with modest
phone units as a universal TIND phone set [24]. Since not pkrplexity than sentence-level grammars. It can be easily
single-context CD phone units appear in the training set aegtended to a stochastic language model by estimating the
not all units appear frequently enough, we used a thresholdooinnection weight.
50 to limit the choice of the number of single-context units. The network characterizessemantic conceptf a specific
This resulted in a set of 1034 right CD units (as opposed to thebtask such as date and location. Furthermore when we con-
full set of 1640 units). We also supplemented it with the satruct a network that consists of parallel key-phrase networks
of 41 CI units to handle possible missing context due to thiepresenting all subtasks, a complex input utterance can be
above unit reduction rule. This gives a set of 1075 RE&D decoded as a sequence of semantic concepts without a strict
phone units. syntactic constraint on whole sentence patterns.

Except for the background silence unit, each subword unit
is modeled by a three-state left-to-right hidden Markov modg!. Detection Algorithm
(HMM) with no state skip. Each state is characterized by
a mixture Gaussian state observation density. A maximui%w

of eight mixture components per state is used. Training Wgsrward-backward two-pass search [23], although a one-pass

done with an iterative segmental ML algorithm (e.g., [22]) i etection is possible. For the detection purpose, we incorporate

. ' . hypothesis merging and pruning.
which all utterances were first segmented into subvv_ord um@{Although the A*-admissible stack-decoder can find the
The Baum-Welch algorithm was then used to estimate the .
. . o cofrect N-best hypotheses of word strings, the resultilg
parameters of the mixture Gaussian densities for all states, 0

subword HMM's. The HMM parameters were then refinegeSt hypotheses are generally of similar word sequences with

; . e one or two replacements. Since our concern is to obtain key-
using the segme_ntgenerallzed proba_@hstm desce(&PD) é)hrase candidates on the partial input, not string hypotheses
algorithm to minimize phone recognition error [25]. It wa

observed that such a training procedure attempts to maximfznethe whole input, we abandon the (string) hypotheses whose

. i rther extension will lead to the same (phrase) sequence as
the separation between phone models and gives a be geer reviously extended ones
recognition performance than the ML-trained models. It also P y :

achieves the goal of TIND training without taking into accounr% ;-rtllien mriregrmi?] agtitggug; ?ﬁerﬁgc_hﬂig ;Setlvr\?srllf rr’l“err:]tg:j igy
of vocabulary and grammar specification of new tasks [24]. 9 ging y-p ) ging

state corresponds to the node where key-phrases or filler
IIl. K EY-PHRASE DETECTION phrases are completed and further extension starts next new

. h . Wh h hesi h k- i
For each subtask, key-phrase patterns are described 4) oes en a hypothesis popped by the stack-decoder is

- . gg%ed as a complete phrase for output, it must be at some
finite state grammar. Since the set of keywords and ke lerging state of the grammar network. Then, we extend one
phrases are to be directly mapped to semantic values of t

. . . “more word and time-align the phrase with the best extension.
related slots, they are easily derived from the task definitio ‘the grammar node was reached at the same time-point by
For example, in a subtask of asking for a date, possible wor‘%

) . . of the previous hypotheses, then we discard the current
‘h"’?t can fill the Qate slot are derived. Su_ch ehrase? ar? def', ?/gothesis after outputting the detected phrase. Otherwise, the
to include functional words or patterns like “at the” or “near

tirre-point is marked for further search.

instead O.f using keywords alone. It was demonstrated n [2 The detection algorithm is quite efficient without redundant
and confirmed in some of the experiments here that this s%

tactic constraint enables more stable matching and improv,

The detection algorithm adopted in this work is based on the

othesis extensions. It suboptimally produces the correct

-best key-phrase candidates by the order of their scores. It

detectlcc)jnbaccurac;f/.tr\INekalso gjefme fg)lle;r p;thrases that are grtminates at the desired number of phrases or a certain score
covered by any of the key-pnrases but often accompany Wgeshold. in the experiment described later, the detection is

key-phrases. In th|_s haper, however, we use only m|n|_mal f'”%rminated when the score of the hypothesis gets lower than
phrases knowa priori and do not tune subgrammars, in orde6 99 times the best score

to demonstrate generality and portability of our approach.

A. Key-Phrase Network IV. PHRASE VERIFICATION AND CONFIDENCE MEASURES

The key-phrase and filler phrase subgrammars are compiledVe adopt a vocabulary-independent approach for verifica-
into a finite state network, where key-phrases are recurreigin of detected phrases [26] so as to be applicable to a new
2The algorithm was graciously provided by J. van Santen of the Linguisti(%"btaSkS with new Vocat?l{la“es_ a}nd grammg_r defInItIO!’lS. For
Research Department, Bell Labs, Murray Hill, NJ. the purpose, both the verifier training and verifier operation are
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subword-based and independent of any specific task domaifise phrase is accepted as a valid theory if the corresponding
The verifier is constructed for every subword and its training @nfidence measure exceeds a certain threshold.

performed with a phonetically balanced database that was usetlVe have investigated several functional forms of the con-
for training subword models. The verification procedure is fadence measure. The first confidence meaguié; is based
combination of subword-level hypothesis tests. Specificallgn frame duration normalization. It is exactly the difference
it consists of following three steps. First, detected phrasé the two Viterbi scores of the subword models and the
hypotheses are segmented into subword units. Next, hypothesisesponding anti-subword models defined as

tests are performed for every subword segment. Then, the 1

phrase verification is done by combining their results. CM; = 7 Z (In* LLR) (4)

A. Subword-Level Acoustic Verification wherel,, is duration of subword: and L is total duration of

For every subwordh in a phrase sequence, a verificatioﬂihe phrase, i.e.L = X I,.

score is computed based on its correspondikgjihood ratio Thel_sec_ond lon_€M2_|s tI)ased on subfvxl/ordl_ske?rr]nen(;-ba_sed
(LR) statistic, defined as normalization. It is a simple average of log likelihood ratios

of all the subwords.

_ P(O|Ho) _ P(O|X) 1
LR, = (1) CMsy = ¥ znj LLR,. (5)

~ P(O|H1) — P(O]Xs)

where O is the observed speech segmeff; is the null The third oneCM; focuses on less confident subwords
hypothesishat subword unit: is present in the speech segmentather than averaging all the subwords. This is because some
O, H; is the alternative hypothesithat subwordn is not in  subwords of an incorrect phrase may exactly match the input.
the speech segment, and A{, and A, are the corresponding For example, the latter part of “November” matches the input
subword anchnti-subwordmodels for subworeh, respectively “December” and gets good verification scores. In order to
[18]. The observation sequence is aligned for subwordy reject it, we have to focus on the former parts, which will
with the Viterbi algorithm as the result of recognition. get poor verification scores. In order to find less confident
The anti-subword model can be considered as a model teabwords, we normalize the log likelihood ratio assuming
approximately characterizes the alternative hypothdsisFor a Gaussian distribution for every subword. The means and
every subword model, a corresponding anti-subword modehisriances of log likelihood ratios for all the subwords are
trained specifically for the verification task. It is constructedstimated with the samples used for training subword and anti-
by clustering the highly confusing subword classes [26]. It hasibword models. We denote this normalized log likelihood as
the same structure, i.e., number of states and mixtures, as feR:.
correct subword HMM. The use of an anti-subword model as a
reference is more discriminative than unconstrained decoding LLR! = (6)
of subword models [26], because the anti-subword model is o(LLE(n))

more sensitive to the similarity of subwords and free frogynere (LLRyy) and o(LLR,,) are the mean and the
the performance of subword-level recognition. In fact, it hagyiance for subword class ef, respectively. Then, we pick

the ability to reject substitution errors by the recognizer. Hergp those subwords whose likelihood ratios are less than their
we use a context-independent anti-subword model, while th%ansu(LLRc(n))' Thus, CMs is defined as

recognition is done with the context-dependent model. _

By taking the logarithm of (1) and normalizing it by the CM; = 1 Z {LLR;;, if LLE;, <0 7)
duration (lengthj,, of the speech segmet we defineL. LR,, N = 0, otherwise.
as,

LLR, — i(LLR ()

The fourth confidence measu@M, uses the sigmoid
LLR, = {log P(O|X) — log P(O|X?)}/1,,. (2) function. This form is used as a loss function for training
with the minimum error rate criteria.
Since the first term of the equation is exactly the recognition 1 1
score, we just offset the score by that computed with the CMy = N Z 1+ exp(—a - LLR,,)’ (8)
anti-subword model. "

For every confidence measure, a specific threshold is set up.
If its value is below the threshold, the candidate is discarded

. o from the phrase lattice.
A confidence measure (CM) for phrase verification com-

bines the subword-level verification scores. It can be consid-

ered as goint statistic for overall phrase-level verification.

Suppose the detected phrase consistsNofsubwords, the .
A. Sentence Parsing

confidence measure for the phrase is defined as a function
of their likelihood ratios. Parsing algorithms are necessary for combining the verified

phrase candidates into sentence hypotheses. We focus on
CM = f(LLRy,---,LLRy). (3) the one-directional left-to-right search. Since trellis parsing

B. Confidence Measures of Phrase Hypothesis

V. SENTENCE PARSING AND VERIFICATION
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requires much computation with a little improvement of ac- Qut-Of-Grammar samples
curacy, we adopt a lattice parsing algorithm [21]. It connects
phrase candidates according to their acoustic scores and the
semantic constraints. The semantic constraints specify permis-
sible combinations of key-phrase tags. As the acoustic score, August fit August fifth
we use the score given by the forward-backward search in eight twenty August twentieth
key-phrase detection.

In order to find the most likely sentence hypothesis ef- ¢ Of-Task samples
ficiently, the stack decoding search is adopted. It extends
the best partial hypotheses until a sentence hypothesis is

I will be returning the car on September fourth

. uh Decem
completed. Suppose that the current hypothesis at the top of
the stack isjo = {w1,w-}, and a new hypothesis is generated Idaho Idaho
by concatenating a phras®;. The evaluation function for the (breath only)
new hypothesisy = {w;, w2, w3} is computed as an offset _
from the upper bound score for the whole inpu, as follows: Fig. 2. Sample utterances of DATE subtask.
flwiwows) =ho — (ho = f(wy)) — (ho — f(w2)) reject a sentence hypothesis only if its semantic representation
— (ho — f(wg)) is not completechnd most of the input segments are rejected

by the likelihood ratio tests. When we apply this on fiiebest
outputs of the sentence hypotheses, the parsing and verification
process will continue until a satisfactory one is obtained.

:f(wle) — (ho — f(wz))

where f (w;) is an evaluation value for a detected phrase
The initial hypothesis isf(null) = ho. Every time a new
phrase is added, its offset is subtracted. The upper béaynd
is computed in the forward pass of the recognition with the We have evaluated our algorithms in two spoken dialogue
phrase network. applications; one is “car reservation task” and the other is
The algorithm is based on thghort-fall method[27], and “movie locator task.” The first one involves several interac-
the evaluation is A*-admissible. However, its heuristic powdions of simple utterances, while the latter task is generally
is weak in guiding the search efficiently. Especially, in theompleted with a single query of a rather complex sentence.
detection-based parsing which does not assume compl&t&ls were performed on dialogue systems of the tasks using
coverage of the whole input, shorter hypotheses with fewarspeech recognizer. All the data were collected via telephone
words are likely to be accepted. Thus, we need to modify tlises and uttered by general public users.
algorithm to accommodate the skipped portion. One way toFor evaluation, we define the semantic accuracy in much the
accomplish this is to simply offset a uniform penalty valusame way as the word accuracy. In particular, the semantic
proportional to the skipped length. This rough approximatiogrror is defined based on the sum of substitution, insertion
assumes noninformative statistic and makes the search suupst deletion errors by matching the content of the semantic
timal. To enhance the result, it is desirable that as many fillglots instead of the recognized words. The semantic accuracy
phrases (including silence) as possible are generated as weformulated as follows:
as key-phrases in forming sentence hypotheses.

VI. EXPERIMENTAL EVALUATION

1 — (# substitution errors+ # insertion errors

B Sentence Verification + # deletion errors /# answers. 9)

The sentence verification module makes the final decisidhis measure demands strict verification, namely to reject
on the recognition output. It uses the global acoustic af¥traneous words; otherwise insertion errors are counted.
semantic information on the entire input utterance. While FOr an example sentence, “That will be Saturday, December
the key-phrase verification makes only local decisions, th&enty-fourth,” the following three semantic slots are the
sentence verification process combines its results and realigggected output:

a similar effect as the conventional utterance verification [SATURDAY: dy.6| [DECEMBER: mt.12)]
algorithm, although it attempts to accept the input even if it
contains unexpected filler phrases.

The semantic verification process judges if the semantic rep+or a detailed analysis, the sample utterances are classified
resentation in the output is completed. In dialogue applicationisto three categories. The classification is purely based on
we often observe incomplete utterances; for example, sayingnscription texts and does not reflect acoustic difficulty.
a month, “August,” without specifying any days of the monthin-grammar sentences consist of valid phrases and are cov-
Ideally, they should also be accepted with the assumptiered by the conventional sentence gramm@arg-of-grammar
that remaining semantic slots will be completed during theentences have out-of-vocabulary or fragmental words, or
subsequent dialogue exchanges. However, unconditional apgments with more than one assignment to a semantic slot.
proval of partial sentences invalidates the effect of utteran€bey should be properly interpreted in an ideal dialogue
verification and accepts false alarms as well. Therefore, wgstem but are usually not accepted by the rigid sentence

[TWENTY FOURTH: dt.24].
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Fig. 3. Phrase network for DATE subtask.

grammars.Out-of-tasksentences contain no key-phrases and 100

should be rejected. For a unified definition of the semantic % :gmﬂ — |
accuracy, we prepare a null slot as an answer for therg. \ iy
Thus, the semantic accuracy for out-of-task samples meags 80 | 1
. . E R
the correct rejection rate. g 70 | &
<
3 60 ]
&
A. Car Reservation Task 5 50 | N
[
In the car reservation task, a user is asked to provio% 40 | ~—
all the reservation information by voice so that a rental cag T
; : 30 B
reservation form can be completed. The current dlalog@ e
management is rigid. The user is prompted to give a reply 20 t e
to a particular request. Specifically, the form fields include the 10 L L
account number, the spelling of the user name, pickup and 0 2 4 6 8 10 12 14 16 18 20
drop-off locations, dates, times, and the desired car type [1]. Rejection of Correct Phrases (%)

We refer to each pair of the prompt and the answer spec-
ifying such information as a subtask. For each subtask, a
different vocabulary set and a grammar is prepared to improve ) o
recognition performance. For example, in the LocATioNhe false alarms to a half with 2.5% rejection of correct
subtask, prompting “Please say your pickup location,” tHayPotheses. _ o o
system accepts only vocabulary and expressions regarding th&he fact is also confirmed in Fig. 5 that plots distributions
rental location. of the confidence measur€M; for correct and incorrect

Here, we choose the DATE subtask for the primary evaluypotheses. There are only a few correct hypotheses in the
tion, because it contains the largest number of samples dAB9€ of lower half of the distributions for incorrect ones.
typical dialogue phenomena. The total number of samplesThiS reduction improves the semantic accuracy of out-of-
is 1368. Besides in-grammar utterances, there are 154 dif@mmar and out-of-task samples as a result of the sentence
of-grammar and 91 out-of-task samples. Some examples BAgsing. Fig. 6 shows the semantic accuracy for each category
shown in Fig. 2. of samples depending on the threshold valuesddds. The

A simplified phrase network for the DATE subtask is showlgft-most of the graph corresponds essentially to the baseline
in Fig. 3. The phrase subgrammar allows iterations of days @gtection method without any verification. The best operating
the week, months, days of the month, and years with sorBeint exists between1.2 and—1.6, below which the accuracy
constraints. The vocabulary size is 99. In this subtask, no fillet in-grammar utterances does not change and that of out-of-
phrases are incorporated. grammar and out-of-task samples decreases. While the curves

Phrase verification was performed with several confident®s in-grammar and out-of-task utterances are monotonous,
measures defined in the previous section. Fig. 4 shows colitere is a performance peak on the out-of-grammar samples
parison of the confidence measures with the acceptance th@ affects an ideal choice of the threshold value.
of incorrect phrases (false alarms) versus the false rejectioriThen, several confidence measures were compared in se-
rate of correct phrases. The frame duration-based confideneantic accuracy after tuning thresholds for each in Table I.
measure(CM;) is inferior to the subword segment-based\lthough the use of any confidence measures improved the
ones. The confidence measuré//; that is proposed in this accuracy, the frame duration-based confidence me&side
work achieves the best performance. This measure reduiesiot as effective as the subword segment-based measures

Fig. 4. Effect of phrase verification (DATE subtask).
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Fig. 5. Distributions of CM3 (DATE subtask).

Fig. 6. Semantic accuracy versus threshold (DATE subtask).

TABLE |

. g . SEMANTIC ACCURACY WITH SEVERAL CONFIDENCE MEASURES (DATE SUBTASK
(CM, ~ CM,), as observed in the phrase verification ( )

performance. The result matches with the previous work [28]. in-grammar | out-of-grammar | out-of-task | total
The proposed confidence measuré/; that focuses on less samples samples samples
confident subwords leads to the best performance. number of samples 1123 154 91| 1368
_ Nex.t, several approaches for s_peegh unders}andmg WETE, verification 92.9% 58.1% 10.8% | 86.2%
mvesugated._ Here, s_e|_’1dtence verification Ivvas |nc|pr§0r|at(_ed. oM 91.7% 68.1% 34.1% | 87.3%
For comparison, a rigid grammar was also app ied. t-|s oMo 91.9% 71.3% 41.8% | 88.0%
fundamentally the same as the one used for the field trial, _

. . . CM3 92.3% 71.6% 41.8% | 88.5%
and uses the constraint of typical sequences of phrases, which

CM4 91.8% 71.0% 44.0% | 88.0%

detection does not assume. We also compared with the de-
coding followed by the verification procedure as in [28]. For

phrase verification¢/Ms was adopted. The same beam W'dtgubtasks are shown in Tables lll and IV, respectively. In

was used for all methods. hese results, the confidence measurg/; was used for

The_ resul_ts are I!sted in Table . Strlctl_y spe_akmg, bot hrase rejection, although there was little difference observed
detection with a rigid grammar and decoding with a phra er'nong the choices oM. CMs. and CM,. In all these

n(_atwork (relaxed grammgr) are possible. However, de_COdngbtasks, much the same’ tendéncy is confirmed as in the
with the phrase network is unfairly compared because it dOBiTE subtask. The detection-based strategy outperforms the

not involve interphrase constraints and optimizations. ArHjecoding methods, and the phrase verification improves the
detection with a rigid grammar makes no difference in peE{ccuracy for out-of-grammar utterances

formance from decoding, because it just delimits the sentence
into pieces and assembles them with the same constraints.
Therefore, we simply refer talecoding as decoding with B. Movie Locator Task

a rigid grammar andietection as detection with a phrase The movie locator task allows a user to make an inquiry
network. on movies being played at theaters. The field trials were

It is clear that our detection strategy outperforms the coflesigned to deal with information in the Chicago area. In the
ventional decoding scheme. It achieves much higher accuragécification, a user can ask about movie titles, theaters, or the
for out-of-grammar samples while keeping comparable pafme, by specifying a movie title, a movie category, a theater,
formance for in-grammar ones. Detection with the phrasg a location area. Typically, the session completes in a single
network almost doubles the accuracy for out-of-grammatterance of the query followed by a system reply. But the
samples, and the use of phrase verification improves it furth@terances are full or complex sentences and involve multiple
The verification applied after decoding improves the rejectigshrases as well as extraneous words. We observed a variety
performance for out-of-task utterances, but it is not so effectiv¢ out-of-grammar samples, which constitute more than 25%
in recognizing out-of-grammar samples. This is because key-the collected samples.
phrases cannot be recovered from the result of the initialExamples of these utterances are listed in Fig. 7. In the third
decoding processing with the rigid grammar. The sentenascample of the out-of-grammar samples, the specification like
level verification has little effect, but it improves rejection ofbetween eight and ten” is not allowed in the task. The fourth
out-of-task utterances. example contains the movie titeitizen Kane which was no

We have also done experiments on other subtasks in tbager played at the theaters. As in the fifth example, it is more
car reservation task. The results on TIME, and LOCATIOMNKely that a sentence contains at least one appropriate semantic
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TABLE I
SEMANTIC ACCURACY WITH SEVERAL APPROACHES(DATE SUBTASK)

in-grammar | out-of-grammar | out-of-task | total

samples samples samples
number of samples 1123 154 91 1368
decoding (with rigid grammar) 92.7% 29.4% 18.7% | 83.4%
+ phrase verification (CM3) 92.8% 42.3% 39.6% | 85.6%
+ sentence verification 92.8% 41.3% 48.4% | 85.7%
detection (with phrase network) 92.2% 58.1% 19.8% | 86.2%
+ phrase verification (CM3) 92.3% 71.6% 41.8% | 88.5%
+ sentence verification 92.2% 71.6% 51.6% | 88.7%

In-Grammar Samples

Where is Forrest Gump playing near Wheaton ?
What-s playing ot the Arcada theater in Saint Charles ¢
What time is the Specialist playing at the Stratford square theaters ?

Out-Of-Grammar Samples

What fa fam what family movies are playing in Evanston ?

Can you tell me if there are any comedies playing at Stratford Mall theater ?
Where is Forrest Gump playing near Wheaton between eight and ten ?
Where is Citizen Kane playing near Naperuville ?

What is the movie Nell about ¢

Out-Of-Task Samples

What does rated R mean ¢
What does the mouvie cost ?

Fig. 7. Sample utterances of MOVIE task.

TABLE 1l TABLE IV
SEMANTIC ACCURACY (TIME SUBTASK) SEMANTIC ACCURACY (LOCATION SUBTASK)
in-grammar | out-of-grammar | out-of-task | total in-grammar | out-of-grammar | out-of-task | total
samples samples samples samples samples samples
number of samples 818 110 63 991 number of samples 681 99 131 91
decoding 87.7% 11.1% 27.0% | 79.1% decoding 94.2% 16.1% 26.0% | 79.0%
+ phrase verification 86.9% 26.3% 58.7% | 80.7% + phrase verification 93.3% 21.9% 41.2% | 80.4%
+ sentence verification 86.9% 24.7% 60.3% | 80.6% + sentence verification 7933% 21.9% 41.2% | 80.4%
detection 86.6% 46.3% 20.6% | 81.1% detection 926% 40.1% 20.6% | 79.7%
+ phrase verification 85.6% 64.7% 55.6% | 82.9% + phrase verification 91.2% 59.1% 35.1% | 82.1%
+ sentence verification 85.6% 62.6% 58.7% | 82.8% + sentence verification 91.1% 57.1% 37.4% | 82.1%

slot (movie titleNell in this example), even if the query itself isautomatically derived by connecting keywords and adjacent
not relevant. As a result, the ratio of the out-of-task samplégnctional words. Then, the phrase grammar automata were
is smaller. connected with some constraints in a recurrent way using the

The number of utterances used for evaluation is 2303, apeeceded trial data. Sentence verification was not tested for
the vocabulary size is 474. this task because there were only a few out-of-task utterances
The phrase network was derived by connecting paralil the test database.
phrase subgrammars, instead of using a rigid grammar tolhe sentence understanding results are listed in Table V.
cover whole sentences. We first describe phrase subgramniMush the same tendency as in the car reservation task is
for every semantic slot. The phrase subgrammars were seatinfirmed. The detection strategy achieves higher accuracy
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TABLE V be useful in the user interface design to decide when and how
SeEmANTIC ACCURACY (MOVIE-2 TAsK) to confirm users’ answers, when and what kind of voice repair
in-grammar | out-of-grammar | out-of-task | total is needed. We believe our framework of combined detection
samples samples |  samples and verification will contribute toward designing intelligent
number of samples 1662 601 40 2303 SpeeCh interfaces.
decoding 78.1% 33.5% 5.0% | 65.6% ACKNOWLEDGMENT
+ verification (CM3) 76.8% 42.4% 30.0% | 67.3% .
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