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Abstract—We propose a novel speech understanding strat-
egy based on combined detection and verification of seman-
tically tagged key-phrases in spontaneous spoken utterances.
Key-phrases are defined in a top-down manner so as to constitute
semantic slots. Their detection directly leads to robust under-
standing. A phrase network realizes both a wide coverage and a
reasonable constraint for detection. A subword-based verifier is
then incorporated to reduce false alarms in detection and attach
confidence measures of the detected phrases. This set of phrase
confidence measures, when incorporated in a spoken dialogue sys-
tem, forms a basis for designing intelligent speech interfaces that
accept only verified key-phrases and reprompt users to clarify
unspecified or unrecognized portions. Several forms of confidence
measures based on subword-level tests are investigated. The
proposed approach was tested on field data collected from real-
world trial applications. The combined detection and verification
strategy drastically improves the accuracy in handling out-of-
grammar utterances over the conventional decoding approaches
while maintaining the performance for in-grammar utterances.

Index Terms—Dialogue systems, key-phrase detection, speech
recognition, speech understanding, utterance verification.

I. INTRODUCTION

I N RECENT years, several spoken dialogue systems based
on continuous speech recognition have been evaluated in

real-world applications. These systems use deterministic finite
state grammars to accept and decode typical user utterances,
because there are no data available to train statistical lan-
guage models for specific tasks. The use of a rigid grammar
represented by a finite state machine is reasonably effective
for typical in-grammarsentence patterns, i.e., sentences that
can be described by the finite state grammar. However, in
real-world environments, we have observed wide utterance
variation inherent in a large user population that is not covered
by the task grammars, even though they had been tuned
manually by system developers during the trial period. In
addition to the desired information, these samples usually
include extraneous words, hesitations, repetitions, disfluency
and other unexpected expressions [1]. Most of such utterances
contain some key-phrases that are task-related and may be
sufficient for partial or full understanding. Other samples are
not relevant to the task and should be rejected.
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When we review most of the spoken dialogue systems, their
task specifications are highly well-defined, so that necessary
information for the system is described with a definite set of
task-related slots. Their typical examples include form filling
or information retrieval by voice. Therefore, speech under-
standing problem can be formulated as extracting or detecting
the task-related slots from unconstrained utterances. These
slots are usually defined with keywords or key-phrases such
as time and place. One of the design goals of aflexible speech
understandingsystem should be to detect the semantically
significant portions and reject theout-of-grammarand out-
of-taskportions of the input utterance. Utterance verification
technique enhances this property by giving confidence mea-
sures to recognition results. Combined with a flexible dialogue
manager, the detection and verification framework will realize
partial understanding and disambiguation of unclear portions
through the subsequent dialogue session.

One of the most comprehensive projects on spoken dialogue
processing so far was the Air Travel Information System
(ATIS) project sponsored by ARPA [2]. In such a task where a
lot of data have been collected, the use of a statistical language
model -gram) is typical and can be effective. Moreover,
statistical concept modeling [3], [4] has been studied and
demonstrated to be a viable way to model semantics in
domain-restrictive tasks. In actual situations, however, it is
not realistic to assume that a large amount of dialogue data are
available for training such models for every single application.
The effort in data collection and labeling is often expensive,
labor intensive, and the results are potentially error-prone
and sometimes undesirable. Thus, the prevailing statistical
language modeling in the ATIS evaluation cannot be applied
directly to many of the real-world applications.

Therefore, most of the real-world dialogue systems use finite
state grammars for the specific tasks. The recognizer tries to
match or decode the whole utterance input into possible word
sequences accepted by the grammar. Usually the grammar
should realize both a wide coverage to accept a variety of
sentences and a small perplexity to achieve high recognition
performance. These requirements become very difficult to
satisfy when a wide variety of spontaneous utterances need
to be coped with in real-world environments. For example,
in an apparently simple subtask of recognizing responses to
the prompt “What is your drop-off date?” in a car reservation
task, some users include unexpected phrases such as “I will
be returning the car on September fourth please” in their
answers. Many utterances contain hesitation like “August fit
August fifth.” The situation becomes even worse when the task
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involves more complex queries. Tuning the task grammars to
cover all possibilities would be an endless effort. The problem
originates from the framework of decoding that assumes a rigid
sentence-level grammar and applies the uniform constraint on
the whole input. The inclusion of filler models in the definition
of a finite state grammar works for limited samples that closely
follow the rigid grammar. But it does not solve the problem
fundamentally.

As a more robust strategy, word spotting approaches [5],
[6] have been studied. They are classified into two approaches
in terms of the modeling of non-keyword parts. The first is
the use of a large vocabulary continuous speech recognition
(LVCSR) system (e.g. [7], [8]). It attempts to incorporate as
much lexical and pragmatic knowledge as possible. However,
it does not model the ill-formed phenomena such as hesitations
and repairs, which are often found in spontaneous speech.
The approach based on LVCSR is also not a realistic solution
both in performance and efficiency, especially in cases where
the possible vocabulary is not well specified or the statistical
language model for the subtask is not reliably trained. The
second word spotting approach is to use a general acoustic sink
model (e.g. [9]) or a parallel network of context-independent
phone models (e.g., [10]). However, such simple models
are usually not sufficient to characterize non-keyword events
especially when the size of keyword vocabulary is over a
few dozen. The keyword models are easily matched with the
irrelevant portions, causing so many false alarms that cannot
be easily handled with subsequent processing. Most of the
past works tune the keyword models and the sink model in
a vocabulary-dependent manner (e.g., [10]), sacrificing the
advantage of subword-based recognition. While whole-word-
based keyword spotting is possible, the approach has only
proven effective in very small vocabulary tasks (e.g., [9]).

In this paper, we propose acombined detection and veri-
fication approach that realizes flexible speech understanding.
We first extend the conventional keyword spotting framework
to key-phrase detection. It is well known that longer speech
units such as phrases are more stable than words for spotting
even when they are embedded in extraneous speech. Key-
phrases are also semantic units that represent partial task-
related meanings in a sentence.

The idea of extracting such semantic units from a complex
sentence is consistent with the similar findings about partial
parsing in the ATIS project. Severaltemplate matchingal-
gorithms [11], [12] androbust parsingalgorithms [13], [14]
oriented toward parsing ill-formed sentence fragments were
found quite effective in handling some disfluencies in the ATIS
task. Most of these approaches, however, assume that a word
sequence (text) has been obtained by some speech recognizer
(using -gram models). It is very difficult to realize effective
postprocessing with the current LVCSR systems unless a
large word lattice with focus on keyword and key-phrases
is generated. We need precise-best list for key-phrases
with acoustic confidence, but we can merge non-keywords as
garbage. A simple deep word lattice will generate too many
irrelevant hypotheses for speech understanding.

Our strategy detects such key-phrases directly from speech
and performs optimization jointly with the semantic con-

straints. It can be viewed that the detection module proposes
possible theories for the system to explore in subsequent
processing. Since many theories are still likely as the result
of partial matching, a key-phrase verification module is incor-
porated to select reliable theories and eliminate false alarms.
After this preliminary hypothesis pruning, the remaining the-
ories are parsed and merged to form valid sentences as well
as their semantic frame representations.

In real-world spoken dialogue processing problems where
the definition of the task and the vocabulary is always evolv-
ing, portability of the system is significant. In some tasks
such as making inquiries on movie titles, the vocabulary of
movie titles changes regularly. Therefore, not only acoustic
models for recognition but also verification formulation should
be vocabulary-independent subword-based. Moreover, the lan-
guage model has to be portable, since writing rigid sentence
grammars takes much human effort and training statistical
models needs huge data collection. Specifying keywords or
key-phrases is much easier for system designers, as they can
often be automatically derived from the task specifications.
The set of key-phrases will accept a wider variety of utterances
than sentence grammars can. Especially in dialogue-based
systems, it is possible to set up subtask grammars according
to the dialogue state and apply them to a large-scale task.

The rest of the paper is organized as follows. We first present
an overview of the proposed detection and verification system
in Section II. Key-phrase detection and key-phrase verification
are described in detail in Sections III and IV, respectively.
Issues related to sentence parsing and verification are discussed
in Section V. Experimental results on several subtasks are
reported in Section VI. Finally we summarize our findings in
Section VII.

II. DETECTION AND VERIFICATION STRATEGY

It is becoming increasingly clear that an automatic speech
recognition system needs to have both high accuracy and a
friendly interface that allows a user to speak naturally and
spontaneously without imposing a rigid format. Our strategy
for handling such spontaneous utterances, particularly when
contemplating domain-specific services, is to focus on a finite
set of vocabulary words most relevant to the intended task and
make use of the technology ofutterance verification(UV). The
system then detects and identifies the in-vocabulary keywords
and key-phrases that may be embedded in the fluent speech
utterance, while rejecting irrelevant portions.

The simple word spotting scheme that uses small templates
can be easily triggered by local noise or confusing sounds.
Using a longer unit is advantageous because it can incorporate
more distinctive information and realize stable acoustic match-
ing both in recognition and in detection. Therefore, one major
feature in our strategy is to use key-phrases as the detection
unit in addition to using keywords. A key-phrase consists of
one or a few keywords and functional words. For example, “in
the morning” for a time period, and “in downtown Chicago”
for a local area. In most situations, they are uttered without
a break even in spontaneous speech. Furthermore, they are
tagged with conceptual information. In fact, we define our
key-phrases so as to correspond to semantic slots such as time
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and place. Unlike bottom-up phrases defined by the-gram
scheme [15]–[17], our top-down phrases are directly mapped
into semantic representations. Thus, detection of them directly
leads to robust understanding.

The other main feature is to incorporate utterance verifi-
cation technique to realize ideal detection mechanism that
does not match irrelevant portions of speech without using
large-vocabulary non-keyword knowledge. One of the most
significant problems in the conventional recognizers is that
they do not know how confident their outputs are. Therefore,
we have been studying utterance verification methods that
perform hypothesis tests on the recognized results and give
them confidence measures [17]–[20]. Based on the confidence
measures, the system can reject utterances that contain super-
fluous acoustic events such as out-of-vocabulary words, any
form of disfluency and ambient sounds, as well as invalid
inputs that have no key-phrases. In this work, we integrate the
verification technique into detection in order to select reliable
detection and eliminate improper matching or false alarms. The
detected key-phrase hypotheses are passed into verification
module for validation.

The keyword or key-phrase verification is different from the
conventional utterance verification, because it is not the final
decision. False rejection of correct hypotheses is critical, while
accepted false alarms can still be eliminated in the subsequent
sentence parsing and verification process. Furthermore, since
verification of phrases is done with partial input of fewer
subword segments than the whole utterance verification, it
demands more reliable confidence measures.

Finally, in order to understand the whole utterance, we
perform sentence-level processing that combines detected key-
phrases and verifies the end result.

A. Overview of the System

Thus, our overall strategy consists of the following steps,
as depicted in Fig. 1.

1) Key-phrase detection: A set of key-phrases are detected
using a set of phrase subgrammars specific to the system
prompt in the dialogue. The key-phrases are labeled
with semantic tags, which are useful in sentence-level
parsing.

2) Key-phrase verification: The detected key-phrases are
verified and assigned confidence measures. The process
attempts to eliminate false alarms. It is a combination of
subword-level verifications that useanti-subword models
to test the individual subwords of the recognized results.

3) Sentence parsing: The verified key-phrase candidates are
connected into sentence hypotheses using task-specific
semantic knowledge. A stack decoder is used to search
for the optimal hypotheses that satisfy the semantic
constraints [21].

4) Sentence verification: The best sentence hypotheses are
verified both acoustically and semantically for the final
output.

The framework will realize not only flexible understand-
ing but also portable and general one, that is vocabulary-
independent and even task-independent.

Fig. 1. Outline of the strategy.

For vocabulary-independent recognition, universal context-
dependent subword units are selected and trained without
influence of a specific vocabulary set. The verification is also
formulated in a subword-based manner. Both phrase verifica-
tion and sentence verification are carried out by combining
likelihood ratio scores of constituting subwords. Moreover,
phrase subgrammars are also easily constructed by specifying
the values of semantic slots that the system tries to extract.
Thus, system designers will not have to precisely predict what
kinds of expressions are used including filler phrases and
extraneous words.

B. Baseline System and Task-Independent Acoustic Modeling

The baseline system used for training and recognition is
described in detail in [22]. Input speech, sampled at 8 kHz,
is initially preemphasized and grouped into
frames of 240 samples with a shift of 80 samples. For each
frame, a Hamming window is applied followed by a tenth-
order linear predictive coefficient (LPC) analysis. A liftered
12-dimensional LPC-derived cepstral vector is then computed.
The first and second time derivatives of the cepstrum are also
computed. Besides the cepstral-based features, the log-scaled
energy normalized by the peak and its first and second order
time derivatives are also computed. Thus, each speech frame
is represented by a vector of 39 features.

The lexical representation of each vocabulary entry is au-
tomatically generated using the Bell Labs Text-to-Speech
grapheme-to-phoneme transcription rules. No hand-tuning is
performed. Recognition is accomplished by a frame syn-
chronous beam search algorithm [22] to determine the se-
quence of words that maximizes the likelihood of the given
utterance. A forward-backward -best search algorithm [23]
is also used to generate multiple word string candidates.

Instead of designing a task-dependent speech recognition
system that only works well for a particular task, we aim
at having a system that works well for a wide range of
tasks without re-training acoustic phone models for each new
task. One way to accomplish this is through discriminative
training of task-independent (TIND) phone models. The reader
is referred to [24] for an in-depth discussion of TIND training.

The data base used for task-independent (TIND) training
is a set of 12 000 utterances of general phrases of American
English collected by AT&T1 over long distance public sub-
scribers telephone network (PSTN). More than 2,000 talkers

1The data base was designed and recorded by R. Sachs of the AT&T Voice
and Audio Processing Architecture Department, Holmdel, NJ, in 1993.
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each speaking up to seven phrases were included. Each phrase
was semantically correct with length ranging from two to four
words. The selection of the phrases was based on a greedy
algorithm such that a maximum triphone coverage is obtained.2

Over 6,000 distinct words were included in the recording.
In order to broaden the context coverage to deal with all

unknown tasks and maintain the performance advantage of the
context-dependent (CD) units over context-independent (CI)
units in all experiments, we use the set of right CD (RCD)
phone units as a universal TIND phone set [24]. Since not all
single-context CD phone units appear in the training set and
not all units appear frequently enough, we used a threshold of
50 to limit the choice of the number of single-context units.
This resulted in a set of 1034 right CD units (as opposed to the
full set of 1640 units). We also supplemented it with the set
of 41 CI units to handle possible missing context due to the
above unit reduction rule. This gives a set of 1075 RCDCI
phone units.

Except for the background silence unit, each subword unit
is modeled by a three-state left-to-right hidden Markov model
(HMM) with no state skip. Each state is characterized by
a mixture Gaussian state observation density. A maximum
of eight mixture components per state is used. Training was
done with an iterative segmental ML algorithm (e.g., [22]) in
which all utterances were first segmented into subword units.
The Baum–Welch algorithm was then used to estimate the
parameters of the mixture Gaussian densities for all states of
subword HMM’s. The HMM parameters were then refined
using the segmentalgeneralized probabilistic descent(GPD)
algorithm to minimize phone recognition error [25]. It was
observed that such a training procedure attempts to maximize
the separation between phone models and gives a better
recognition performance than the ML-trained models. It also
achieves the goal of TIND training without taking into account
of vocabulary and grammar specification of new tasks [24].

III. K EY-PHRASE DETECTION

For each subtask, key-phrase patterns are described as a
finite state grammar. Since the set of keywords and key-
phrases are to be directly mapped to semantic values of task-
related slots, they are easily derived from the task definition.
For example, in a subtask of asking for a date, possible words
that can fill the date slot are derived. Such phrases are defined
to include functional words or patterns like “at the” or “near”
instead of using keywords alone. It was demonstrated in [21]
and confirmed in some of the experiments here that this syn-
tactic constraint enables more stable matching and improves
detection accuracy. We also define filler phrases that are not
covered by any of the key-phrases but often accompany the
key-phrases. In this paper, however, we use only minimal filler
phrases knowna priori and do not tune subgrammars, in order
to demonstrate generality and portability of our approach.

A. Key-Phrase Network

The key-phrase and filler phrase subgrammars are compiled
into a finite state network, where key-phrases are recurrent

2The algorithm was graciously provided by J. van Santen of the Linguistics
Research Department, Bell Labs, Murray Hill, NJ.

and an acoustic sink model is embedded between key-phrase
recurrences. Simple recurrence, however, causes ambiguity.
For example, if we allow any repetitions of the days of the
month, we cannot distinguish between “twenty four (24)”
and “twenty (20)” “four (4).” Therefore, we incorporate
constraints that inhibit impossible connections of key-phrases.

As a whole, the detection unit is a network of key-phrase
subgrammar automata with their permissible connections and
iterations. The constraint achieves wider coverage with modest
perplexity than sentence-level grammars. It can be easily
extended to a stochastic language model by estimating the
connection weight.

The network characterizes asemantic conceptof a specific
subtask such as date and location. Furthermore when we con-
struct a network that consists of parallel key-phrase networks
representing all subtasks, a complex input utterance can be
decoded as a sequence of semantic concepts without a strict
syntactic constraint on whole sentence patterns.

B. Detection Algorithm

The detection algorithm adopted in this work is based on the
forward-backward two-pass search [23], although a one-pass
detection is possible. For the detection purpose, we incorporate
hypothesis merging and pruning.

Although the A*-admissible stack-decoder can find the
correct -best hypotheses of word strings, the resulting-
best hypotheses are generally of similar word sequences with
one or two replacements. Since our concern is to obtain key-
phrase candidates on the partial input, not string hypotheses
on the whole input, we abandon the (string) hypotheses whose
further extension will lead to the same (phrase) sequence as
the previously extended ones.

The merging and pruning mechanism is implemented by
marking merging states of the key-phrase network. A merging
state corresponds to the node where key-phrases or filler
phrases are completed and further extension starts next new
phrases. When a hypothesis popped by the stack-decoder is
tagged as a complete phrase for output, it must be at some
merging state of the grammar network. Then, we extend one
more word and time-align the phrase with the best extension.
If the grammar node was reached at the same time-point by
any of the previous hypotheses, then we discard the current
hypothesis after outputting the detected phrase. Otherwise, the
time-point is marked for further search.

The detection algorithm is quite efficient without redundant
hypothesis extensions. It suboptimally produces the correct

-best key-phrase candidates by the order of their scores. It
terminates at the desired number of phrases or a certain score
threshold. In the experiment described later, the detection is
terminated when the score of the hypothesis gets lower than
0.99 times the best score.

IV. PHRASE VERIFICATION AND CONFIDENCE MEASURES

We adopt a vocabulary-independent approach for verifica-
tion of detected phrases [26] so as to be applicable to a new
subtasks with new vocabularies and grammar definitions. For
the purpose, both the verifier training and verifier operation are
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subword-based and independent of any specific task domains.
The verifier is constructed for every subword and its training is
performed with a phonetically balanced database that was used
for training subword models. The verification procedure is a
combination of subword-level hypothesis tests. Specifically,
it consists of following three steps. First, detected phrase
hypotheses are segmented into subword units. Next, hypothesis
tests are performed for every subword segment. Then, the
phrase verification is done by combining their results.

A. Subword-Level Acoustic Verification

For every subword in a phrase sequence, a verification
score is computed based on its correspondinglikelihood ratio
(LR) statistic, defined as

(1)

where is the observed speech segment, is the null
hypothesisthat subword unit is present in the speech segment

is the alternative hypothesisthat subword is not in
the speech segment and and are the corresponding
subword andanti-subwordmodels for subword respectively
[18]. The observation sequence is aligned for subword
with the Viterbi algorithm as the result of recognition.

The anti-subword model can be considered as a model that
approximately characterizes the alternative hypothesisFor
every subword model, a corresponding anti-subword model is
trained specifically for the verification task. It is constructed
by clustering the highly confusing subword classes [26]. It has
the same structure, i.e., number of states and mixtures, as the
correct subword HMM. The use of an anti-subword model as a
reference is more discriminative than unconstrained decoding
of subword models [26], because the anti-subword model is
more sensitive to the similarity of subwords and free from
the performance of subword-level recognition. In fact, it has
the ability to reject substitution errors by the recognizer. Here,
we use a context-independent anti-subword model, while the
recognition is done with the context-dependent model.

By taking the logarithm of (1) and normalizing it by the
duration (length) of the speech segment we define
as,

(2)

Since the first term of the equation is exactly the recognition
score, we just offset the score by that computed with the
anti-subword model.

B. Confidence Measures of Phrase Hypothesis

A confidence measure (CM) for phrase verification com-
bines the subword-level verification scores. It can be consid-
ered as ajoint statistic for overall phrase-level verification.
Suppose the detected phrase consists ofsubwords, the
confidence measure for the phrase is defined as a function
of their likelihood ratios.

(3)

The phrase is accepted as a valid theory if the corresponding
confidence measure exceeds a certain threshold.

We have investigated several functional forms of the con-
fidence measure. The first confidence measure is based
on frame duration normalization. It is exactly the difference
of the two Viterbi scores of the subword models and the
corresponding anti-subword models defined as

(4)

where is duration of subword and is total duration of
the phrase, i.e.,

The second one is based on subword segment-based
normalization. It is a simple average of log likelihood ratios
of all the subwords.

(5)

The third one focuses on less confident subwords
rather than averaging all the subwords. This is because some
subwords of an incorrect phrase may exactly match the input.
For example, the latter part of “November” matches the input
“December” and gets good verification scores. In order to
reject it, we have to focus on the former parts, which will
get poor verification scores. In order to find less confident
subwords, we normalize the log likelihood ratio assuming
a Gaussian distribution for every subword. The means and
variances of log likelihood ratios for all the subwords are
estimated with the samples used for training subword and anti-
subword models. We denote this normalized log likelihood as

(6)

where and are the mean and the
variance for subword class of respectively. Then, we pick
up those subwords whose likelihood ratios are less than their
means Thus, is defined as

if
otherwise.

(7)

The fourth confidence measure uses the sigmoid
function. This form is used as a loss function for training
with the minimum error rate criteria.

(8)

For every confidence measure, a specific threshold is set up.
If its value is below the threshold, the candidate is discarded
from the phrase lattice.

V. SENTENCE PARSING AND VERIFICATION

A. Sentence Parsing

Parsing algorithms are necessary for combining the verified
phrase candidates into sentence hypotheses. We focus on
the one-directional left-to-right search. Since trellis parsing
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requires much computation with a little improvement of ac-
curacy, we adopt a lattice parsing algorithm [21]. It connects
phrase candidates according to their acoustic scores and the
semantic constraints. The semantic constraints specify permis-
sible combinations of key-phrase tags. As the acoustic score,
we use the score given by the forward-backward search in
key-phrase detection.

In order to find the most likely sentence hypothesis ef-
ficiently, the stack decoding search is adopted. It extends
the best partial hypotheses until a sentence hypothesis is
completed. Suppose that the current hypothesis at the top of
the stack is and a new hypothesis is generated
by concatenating a phrase The evaluation function for the
new hypothesis is computed as an offset
from the upper bound score for the whole input, as follows:

where is an evaluation value for a detected phrase
The initial hypothesis is Every time a new
phrase is added, its offset is subtracted. The upper bound
is computed in the forward pass of the recognition with the
phrase network.

The algorithm is based on theshort-fall method[27], and
the evaluation is A*-admissible. However, its heuristic power
is weak in guiding the search efficiently. Especially, in the
detection-based parsing which does not assume complete
coverage of the whole input, shorter hypotheses with fewer
words are likely to be accepted. Thus, we need to modify the
algorithm to accommodate the skipped portion. One way to
accomplish this is to simply offset a uniform penalty value
proportional to the skipped length. This rough approximation
assumes noninformative statistic and makes the search subop-
timal. To enhance the result, it is desirable that as many filler
phrases (including silence) as possible are generated as well
as key-phrases in forming sentence hypotheses.

B. Sentence Verification

The sentence verification module makes the final decision
on the recognition output. It uses the global acoustic and
semantic information on the entire input utterance. While
the key-phrase verification makes only local decisions, the
sentence verification process combines its results and realizes
a similar effect as the conventional utterance verification
algorithm, although it attempts to accept the input even if it
contains unexpected filler phrases.

The semantic verification process judges if the semantic rep-
resentation in the output is completed. In dialogue applications,
we often observe incomplete utterances; for example, saying
a month, “August,” without specifying any days of the month.
Ideally, they should also be accepted with the assumption
that remaining semantic slots will be completed during the
subsequent dialogue exchanges. However, unconditional ap-
proval of partial sentences invalidates the effect of utterance
verification and accepts false alarms as well. Therefore, we

Fig. 2. Sample utterances of DATE subtask.

reject a sentence hypothesis only if its semantic representation
is not completedand most of the input segments are rejected
by the likelihood ratio tests. When we apply this on the-best
outputs of the sentence hypotheses, the parsing and verification
process will continue until a satisfactory one is obtained.

VI. EXPERIMENTAL EVALUATION

We have evaluated our algorithms in two spoken dialogue
applications; one is “car reservation task” and the other is
“movie locator task.” The first one involves several interac-
tions of simple utterances, while the latter task is generally
completed with a single query of a rather complex sentence.
Trials were performed on dialogue systems of the tasks using
a speech recognizer. All the data were collected via telephone
lines and uttered by general public users.

For evaluation, we define the semantic accuracy in much the
same way as the word accuracy. In particular, the semantic
error is defined based on the sum of substitution, insertion
and deletion errors by matching the content of the semantic
slots instead of the recognized words. The semantic accuracy
is formulated as follows:

substitution errors insertion errors

deletion errors answers. (9)

This measure demands strict verification, namely to reject
extraneous words; otherwise insertion errors are counted.

For an example sentence, “That will be Saturday, December
twenty-fourth,” the following three semantic slots are the
expected output:

For a detailed analysis, the sample utterances are classified
into three categories. The classification is purely based on
transcription texts and does not reflect acoustic difficulty.
In-grammar sentences consist of valid phrases and are cov-
ered by the conventional sentence grammars.Out-of-grammar
sentences have out-of-vocabulary or fragmental words, or
segments with more than one assignment to a semantic slot.
They should be properly interpreted in an ideal dialogue
system but are usually not accepted by the rigid sentence
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Fig. 3. Phrase network for DATE subtask.

grammars.Out-of-tasksentences contain no key-phrases and
should be rejected. For a unified definition of the semantic
accuracy, we prepare a null slot as an answer for them.
Thus, the semantic accuracy for out-of-task samples means
the correct rejection rate.

A. Car Reservation Task

In the car reservation task, a user is asked to provide
all the reservation information by voice so that a rental car
reservation form can be completed. The current dialogue
management is rigid. The user is prompted to give a reply
to a particular request. Specifically, the form fields include the
account number, the spelling of the user name, pickup and
drop-off locations, dates, times, and the desired car type [1].

We refer to each pair of the prompt and the answer spec-
ifying such information as a subtask. For each subtask, a
different vocabulary set and a grammar is prepared to improve
recognition performance. For example, in the LOCATION
subtask, prompting “Please say your pickup location,” the
system accepts only vocabulary and expressions regarding the
rental location.

Here, we choose the DATE subtask for the primary evalua-
tion, because it contains the largest number of samples and
typical dialogue phenomena. The total number of samples
is 1368. Besides in-grammar utterances, there are 154 out-
of-grammar and 91 out-of-task samples. Some examples are
shown in Fig. 2.

A simplified phrase network for the DATE subtask is shown
in Fig. 3. The phrase subgrammar allows iterations of days of
the week, months, days of the month, and years with some
constraints. The vocabulary size is 99. In this subtask, no filler
phrases are incorporated.

Phrase verification was performed with several confidence
measures defined in the previous section. Fig. 4 shows com-
parison of the confidence measures with the acceptance rate
of incorrect phrases (false alarms) versus the false rejection
rate of correct phrases. The frame duration-based confidence
measure is inferior to the subword segment-based
ones. The confidence measure that is proposed in this
work achieves the best performance. This measure reduces

Fig. 4. Effect of phrase verification (DATE subtask).

the false alarms to a half with 2.5% rejection of correct
hypotheses.

The fact is also confirmed in Fig. 5 that plots distributions
of the confidence measure for correct and incorrect
hypotheses. There are only a few correct hypotheses in the
range of lower half of the distributions for incorrect ones.

This reduction improves the semantic accuracy of out-of-
grammar and out-of-task samples as a result of the sentence
parsing. Fig. 6 shows the semantic accuracy for each category
of samples depending on the threshold values for The
left-most of the graph corresponds essentially to the baseline
detection method without any verification. The best operating
point exists between 1.2 and 1.6, below which the accuracy
of in-grammar utterances does not change and that of out-of-
grammar and out-of-task samples decreases. While the curves
for in-grammar and out-of-task utterances are monotonous,
there is a performance peak on the out-of-grammar samples
that affects an ideal choice of the threshold value.

Then, several confidence measures were compared in se-
mantic accuracy after tuning thresholds for each in Table I.
Although the use of any confidence measures improved the
accuracy, the frame duration-based confidence measure
is not as effective as the subword segment-based measures
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Fig. 5. Distributions of CM3 (DATE subtask).

as observed in the phrase verification
performance. The result matches with the previous work [28].
The proposed confidence measure that focuses on less
confident subwords leads to the best performance.

Next, several approaches for speech understanding were
investigated. Here, sentence verification was incorporated.
For comparison, a rigid grammar was also applied. It is
fundamentally the same as the one used for the field trial,
and uses the constraint of typical sequences of phrases, which
detection does not assume. We also compared with the de-
coding followed by the verification procedure as in [28]. For
phrase verification, was adopted. The same beam width
was used for all methods.

The results are listed in Table II. Strictly speaking, both
detection with a rigid grammar and decoding with a phrase
network (relaxed grammar) are possible. However, decoding
with the phrase network is unfairly compared because it does
not involve interphrase constraints and optimizations. And
detection with a rigid grammar makes no difference in per-
formance from decoding, because it just delimits the sentence
into pieces and assembles them with the same constraints.
Therefore, we simply refer todecoding as decoding with
a rigid grammar anddetection as detection with a phrase
network.

It is clear that our detection strategy outperforms the con-
ventional decoding scheme. It achieves much higher accuracy
for out-of-grammar samples while keeping comparable per-
formance for in-grammar ones. Detection with the phrase
network almost doubles the accuracy for out-of-grammar
samples, and the use of phrase verification improves it further.
The verification applied after decoding improves the rejection
performance for out-of-task utterances, but it is not so effective
in recognizing out-of-grammar samples. This is because key-
phrases cannot be recovered from the result of the initial
decoding processing with the rigid grammar. The sentence-
level verification has little effect, but it improves rejection of
out-of-task utterances.

We have also done experiments on other subtasks in the
car reservation task. The results on TIME, and LOCATION

Fig. 6. Semantic accuracy versus threshold (DATE subtask).

TABLE I
SEMANTIC ACCURACY WITH SEVERAL CONFIDENCE MEASURES(DATE SUBTASK)

subtasks are shown in Tables III and IV, respectively. In
these results, the confidence measure was used for
phrase rejection, although there was little difference observed
among the choices of and In all these
subtasks, much the same tendency is confirmed as in the
DATE subtask. The detection-based strategy outperforms the
decoding methods, and the phrase verification improves the
accuracy for out-of-grammar utterances.

B. Movie Locator Task

The movie locator task allows a user to make an inquiry
on movies being played at theaters. The field trials were
designed to deal with information in the Chicago area. In the
specification, a user can ask about movie titles, theaters, or the
time, by specifying a movie title, a movie category, a theater,
or a location area. Typically, the session completes in a single
utterance of the query followed by a system reply. But the
utterances are full or complex sentences and involve multiple
phrases as well as extraneous words. We observed a variety
of out-of-grammar samples, which constitute more than 25%
of the collected samples.

Examples of these utterances are listed in Fig. 7. In the third
example of the out-of-grammar samples, the specification like
“between eight and ten” is not allowed in the task. The fourth
example contains the movie titleCitizen Kane, which was no
longer played at the theaters. As in the fifth example, it is more
likely that a sentence contains at least one appropriate semantic
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TABLE II
SEMANTIC ACCURACY WITH SEVERAL APPROACHES(DATE SUBTASK)

Fig. 7. Sample utterances of MOVIE task.

TABLE III
SEMANTIC ACCURACY (TIME SUBTASK)

slot (movie titleNell in this example), even if the query itself is
not relevant. As a result, the ratio of the out-of-task samples
is smaller.

The number of utterances used for evaluation is 2303, and
the vocabulary size is 474.

The phrase network was derived by connecting parallel
phrase subgrammars, instead of using a rigid grammar to
cover whole sentences. We first describe phrase subgrammars
for every semantic slot. The phrase subgrammars were semi-

TABLE IV
SEMANTIC ACCURACY (LOCATION SUBTASK)

automatically derived by connecting keywords and adjacent
functional words. Then, the phrase grammar automata were
connected with some constraints in a recurrent way using the
preceded trial data. Sentence verification was not tested for
this task because there were only a few out-of-task utterances
in the test database.

The sentence understanding results are listed in Table V.
Much the same tendency as in the car reservation task is
confirmed. The detection strategy achieves higher accuracy



KAWAHARA et al.: KEY-PHRASE DETECTION AND VERIFICATION 567

TABLE V
SEMANTIC ACCURACY (MOVIE-2 TASK)

than the decoding one, and the verification process improves
further. Among the confidence measures, is worse than
the others.

VII. D ISCUSSIONS ANDCONCLUSION

We have proposed a key-phrase detection and verification
approach oriented for flexible spoken language systems. The
combination of key-phrases realizes wider coverage than con-
ventional sentence grammars. The combined detection and
verification strategy focuses on the key-phrases and suppresses
the false alarms in the out-of-vocabulary or out-of-grammar
portions.

The constraint of the phrase network and the verifica-
tion procedure significantly improves the detection rate. We
have also studied confidence measures for phrase candidates
based on a subword-based verifier, and proposed a new
measure sensitive to incorrectly recognized subwords. With
this measure, the false alarms are reduced to a half with
a slight false rejection. Since the key-phrases are tagged
with semantic slots, their detection directly leads to robust
understanding. Sentence parsing and verification are performed
using this information. They are effective for rejecting out-of-
task utterances especially in limited task domains.

The experimental results on several tasks demonstrate that
the proposed approach is more effective than the conventional
decoding with rigid grammars. It drastically improves the
accuracy for out-of-grammar utterances while keeping com-
parable performance for in-grammar ones. The verification
applied after decoding is effective only for rejecting out-of-
task utterances but does not realize flexible understanding of
out-of-grammar ones.

The key properties of our framework are portability and
generality. Both the detection and verification are vocabulary-
independent subword-based, thus applicable to a variety of
new tasks. Moreover, the language model of the key-phrase
network is easily derived from task specifications. Our ongoing
research includes refinement of filler phrases using other large
corpora. It is one approach of task adaptation of language
model without assuming task-specific data, and will comple-
ment our framework [29].

The integration of the proposed speech understanding strat-
egy with a dialogue manager is an important issue for further
studies to complete a flexible spoken dialogue system. The
confidence measures obtained in the verification process will

be useful in the user interface design to decide when and how
to confirm users’ answers, when and what kind of voice repair
is needed. We believe our framework of combined detection
and verification will contribute toward designing intelligent
speech interfaces.
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