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Introduction 

 

Bayesian Decision Theory is one method used to solve Pattern Recognition problems, 
when those problems are posed in a particular way.  

Suppose that an observer is standing over a conveyer belt that leads into a grocery store. 
The belt carries 2 types of fruits - oranges and apples. It is up to the observer to determine 
which of the 2 fruits is on the belt at a particular moment. For humans and for machines, 
this is done by examining certain features of the fruits and then classifying them as either 
an orange or an apple based on those features. This is exactly a pattern classification 
problem. If the fruits enter the store at random, and we have no other information, then 
the only way to classify a certain fruit would be by guessing.  

Bayesian decision theory plays a role when there is some a priori information about the 
things we are trying to classify.  

For example, suppose that you didn’t know anything about the fruits, but you knew that 
80% of the fruits that the conveyer belt carried were apples, and the rest were oranges. If 
this is the only information that you are given in order to make your decision, then you 
would want to classify a random fruit as an apple. The a priori information in this case is 
the probabilities of either an apple or an orange being on the conveyer belt. If a decision 
must be made with so little information, it makes sense to use the following rule: 

Decide ’apple’ if P(apple) > P(orange), otherwise, decide ’orange’.  
where P(apple) is the probability of their being an apple on the belt. In this case, P(apple) 
= 0.8 (80%). This may seem strange, because if you use this rule, then you will classify 
every random fruit as an apple. But by doing this, you still ensure that you will be right 
about 80% of the time.  

The above example is very simple, and should just be used to understand the basic idea of 
a pattern recognition problem involving some probability information. In general, there is 
a lot more known about the things we are trying to classify. For example, we may know 
that most apples are red, and therefore if we observe a red fruit, we should classify it as 
an apple. In this case, we could then use the color of the fruit to determine what it is. We 
would usually also have the probability distribution of the color property for apples and 
oranges. This means we would know exactly how rare it is for there an orange to have the 
same color as your typical apple. Obviously this is important, because if oranges were 
more or less the same color as apples then this feature would not be very useful to a 
pattern classifier. These probability distributions play an important role in formalizing the 
decision rule. (For background information, see Stats glossary).  
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The next section will describe in greater detail the importance of the a priori information 
in the pattern recognition problem, and will provide some exact formulas for decision 
rules that use probability distributions.  

Decision Rules 

 

Notation:  
 
As was discussed in the introduction, in most circumstances there is some information 
about the objects we are trying to classify.  

For example, we may have the probability distribution for the color of apples, as well as 
that for oranges. To introduce some notation, let wapp represent the state of nature where 
the fruit is an apple, let worg represent that state where the fruit is an orange, and let x be 
the continuous random variable that represents the color of a fruit. Then the expression 
p(x|wapp) represents the density function for x given that the state of nature is an apple.  

In a typical problem, we would know (or be able to calculate) the conditional densities 
p(x|wj) for j either an apple or an orange. We would also typically know the prior 
probabilities P(wapp) and P(worg), which represent simply the total number of apples 
versus oranges that are on the conveyer belt. What we are looking for is some formula 
that will tell us about the probability of a fruit being an apple or an orange given that we 
observe a certain color x. If we had such a probability, then for some given color that we 
observed we would classify the fruit by comparing the probability that an orange had 
such a color versus the probability that an apple had such a color. If it were more 
probable that an apple had such a color, the fruit would be classified as an apple. 
Fortunately, we can use Baye’s Formula which states that :  

P(wj|x) = p(x|wj) P(wj)/p(x) 
What this is means, is that using our a priori information, we can calculate the a 
posteriori probability of the state of nature being in state wj given that the feature value x 
has been measured. So, if you observe a certain x for a random fruit on the conveyer belt, 
then by calculating P(wapp|x) and P(worg|x) we would be inclined to decide that the fruit 
was an apple if the first value were greater than the second one. Similiarly, if P(worg|x) is 
greater, we would decide that the fruit was most likely an orange. Therefore, Baye’s 
Decision Rule can be stated as:  

 
Decide worg if P(worg|x) > P(wapp|x); otherwise decide wapp,  

Since p(x) occurs on both sides of the comparison, the rule is equivalent to saying:  
 

Decide worg if p(x|worg)P(worg) > p(x|wapp)P(wapp); 
otherwise decide wapp.  
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The following graph shows the  
a posteriori probabilities for the 2 class  
decision problem. At every x, the  
posteriors must sum to 1. The red region 
on the x axes depicts values for x for  
which the decision rule would decide  
’apple’. The orange region represents  
values for x for which you would decide 
’orange’. 

The probability that we make an error is just the minimum of the 2 curves at any point, 
since that represents the smaller probability that we didn’t pick. So  

P(error|x) = min[p(wapp|x), p(worg|x)].  
 
This formula represents the probability of making an error for a specific measurement x. 
But it is often useful to know the average probability of error over all possible 
measurements. This can be calculated using Bayes’ Law of total Probabilities, which 
implies that  

 
 

Allowing more than 1 feature and more than 1 class: 

 
In a more general case, there are several different features that we measure, so instead of 
x we have a feature vector x in Rd for d different features. We also allow for more than 2 
possible states of nature, where w1 ... wc represent the c states of nature. Bayes’ formula 
can be computed in the same way as: 

P(wj|x) = p(x|wj)P(wj)/ p(x), for j=1..c  
 

but now p(x) can be calculated using the Law of Total Probabilities so that 

 

As before, if we measure feature vector x, we want to classify an object into class j if 
p(wj|x) is the maximum of all the probability densities for j=1..c. This is the same as the 
Bayes’ decision rule for the 2 category case. 
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Decision Regions 

When any decision rule is applied to the d-dimensional feature space Rd, the result is that 
the space is split up into c decision regions R1, ..., Rc. In the above graph for the 2 
category case, the decision regions were marked in red and orange at the bottom of the 
graph. In general, if x lies in decision region Ri then it means that the pattern classifier 
selected the function gi(x) to be the maximum of all the discriminant functions. The 
decision regions are any subset of the space Rd. For example, if the feature vector is a 2-
dimentional vector, then the discriminant functions gi(x) will be functions of 2 variables 
and will be mapped in 3-D. The decision regions for this case will be subsets of the x-y 
plane. Here are 2 simple examples: 

An example of 1 dimentional decision regions: R1 and R2.  
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An example of 2 dimensional decision regions: R1 and R2. 

 

In general,decision regions may be any subsets of Rd and it is common to have a region 
Ri that is disconnected.  

Obviosly, the shape of the decision bondary depends on the functions P(wi|x). The next 
section takes a closer look at discriminant functions and their corresponding decision 
regions for the Normal Density in particular.  

Decision Rules for the Normal Distribution 

 

Definitions 

 
 
The multivariate normal density is typically an appropriate model for most 
pattern recognition problems where the feature vectors x for a given class wi 
are continuous valued, mildly corrupted versions of a single mean vector ui. 
In this case, the conditional densities p(x|wi) and the a priori probabilities 
P(wi) are normally distributed. (For background information on the normal 
density, see Normal Distribution). As a reminder, the density function for 
the univariate normal is given by  
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The 2 parameters called the mean and the variance completely specify the 
normal distribution. Samples from this type of distribution tend to cluster 
about the mean, and the extend to which they spread out depends on the 
variance. 

 
 
The general multivariate normal density is given by a d-dimensional mean 
vector and a d-by-d covariance matrix: 

 
 
The mean vector is just a collection of single means ui where the ith mean 
represents the mean for the ith feature that we are measuring. For example, if 
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we decided to measure the color and weight of a random fruit, then u1 = the 
mean of all the colors and u2 = the mean of all the weights.  

The covariance matrix is similar to the variance in the univariate case. The diagonal 
elements represent the variances for the different features we measure. For example, the 
ith diagonal element represents the variance for the ith feature we measure. The off-
diagonal elements represent the covariance between 2 different features. In other words, 
the element oij in the above matrix represents the covariance between feature i and feature 
j. This is important because the features that we measure are not necessarily independent. 
Suppose that the color of some fruit depended on the weight of the fruit. The exact value 
of the covariance for color and weight would depend on exactly how they vary together. 
For more information on these values, see Covariance.  

As with the univariate density, samples from a normal population tend to fall in a single 
cluster centered about the mean vector, and the shape of the cluster depends on the 
covariance matrix: 

 
The contour lines in the above diagram show the regions for which the 
function has constant density. From the equation for the normal density, it is 
apparent that points which have the same density must have the same 
constant term:  

 
This quantity is often called the squared Mahalanobis distance from x to u. 
This term depends on the contents of the covariance matrix, which explains 
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why the shape of the contour lines (lines of constant Mahalanobis distance) 
is determined by this matrix. Since this distance is a quadratic function, the 
contours of constant density are hyperellipsoids of constant Mahalanobis 
distance to u.  

In simple cases, there is some intuition behind the shape of the contours, depending on 
the contents of the covariance matrix:  

Description  

Diagram of the 
contour lines on the xy 
plane.  

The covariance matrix for 2 features 
x and y is diagonal (which implies 
that the 2 features don’t covary), but 
feature x varies more than feature y. 
The contour lines are stretched out in 
the x direction to reflect the fact that 
the distance spreads out at a lower 
rate in the x direction than it does in 
the y direction. The reason that the 
distance decreases slower in the x 
direction is because the variance for 
x is greater and thus a point that is 
far away in the x direction is not 
quite as distant from the mean as a 
point that is far away in the y 
direction.  

 

The covariance matrix for 2 features 
x and y is diagonal, and x and y have 
the exact same variance. This results 
in euclidean distance contour lines.  
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The covariance matrix is not 
diagonal. Instead, x and y have the 
same variance, but x varies with y in 
the sense that x and y tend to 
increase together. So the covariance 
matrix would have identical diagonal 
elements, but the off-diagonal 
element would be a strictly positive 
number representing the covariance 
of x and y.  

 

Discriminant 
Functions for the 
Normal Density 

 
One of the discriminant functions that was listed in the previous section on decision rules, 
was  

 
. When the densities p(x|wi) are each normally distributed then the discriminant function 
becomes :  

     (0) 

 

where ui is the mean vector for the distribution of class i, and is the covariance 
matrix for the distribution of class i. 

Here let’s check a special case where the above discriminant function can be significantly 
simplified. 

Suppose that each of the features that we are measuring are independent of 
each other. For example, if we were once again trying to recognize an apple 
from an orange, and we measured the color and the weight as our feature 
vector, then chances are that there is no relationship between these 2 
properties. The non-diagonal elements of the covariance matrix are the 
covariances of the 2 features x1 = color and x2 = weight. But because these 
features are independent, their covariances would be 0. Therefore, the 
covariance matrix for both classes would be diagonal.  



Tutorial on Bayesian Decision Theory with Gaussians 

As a second simplification, assume that the variance of colors is the same is the variance 
of weights. This means that there is the same degree of spreading out from the mean of 
colors as there is from the mean of weights. If this is true for some class i then the 
covariance matrix for that class will have identical diagonal elements. 
Finally, suppose that the variance for the color and weight features is the same in both 
classes. This means that the degree of spreading for these 2 features is independent of the 
class from which you draw your samples. If this is true, then the covariance matrices 

for i=1,2 be identical. When normal distributions are plotted that have a diagonal 
covariance matrix that is just a constant multplied by the identity matrix, their cluster 
points about the mean are spherical in shape, (see Covariance matrix examples).  

To calculate the functions gi(x) now becomes very easy. Suppose that the common 

covariance matrix for all the classes is given by where I is the identity matrix. 

Then the determinant is just and the inverse of is . So the discriminant 
functions now become: 

 
The above 2 terms have been crossed out because they are additive constants 
that are the same for each gi. So the final version of the discriminant 
functions can be given by : 

 
This discriminant function does make some intuitive sense. The first term is 
just the Euclidean norm that has been normalized by dividing by the 
variance . The second term is just the a priori probability of class i. To 
understand how this discriminant function works, suppose that some x is 
equally near 2 different mean vectors. Then the first term for both the 
discriminant function for apples and that for oranges, will be the same. Thus 
the decision rule will rely on the second term alone and will favor the class 
that has the greater a priori probability. As an example, imagine that you 
observe a fruit that has the color and weight properties that lie exactly 
between the average color and weight for oranges and that for apples. Then 
these measured features don’t help in your decision making. But if also have 
the information that 80% of all the fruits are apples, then it would make 
sense to classify that fruit as an apple.  

If you expand out the euclidean distance term, you have a discriminant function that 
looks like: 
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The first quadratic term of x was crossed out because it is the same for every 
gi(x). So the discriminant functions are actually linear and are of the form  

gi(x) = wi
tx + wi0 

where  

       (1)  
and  

 
The decision boundaries for these discriminant functions are found by 
intersecting the functions gi(x) and gj(x) where i and j represent the 2 classes 
with the highest a posteriori probabilities. As in the univariate case, this is 
equivalent to determining the region for which gi(x) is the maximum of all 
the discriminant functions. By setting gi(x) = gj(x) we have that:  

(wi
t - wj

t)x + (wi0 - wj0) = 0       (2) 
Consider the term wi0 - wj0:  

 

 

 

 
Now, by adding and subtracting the same term, we get: 
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By letting: 

 
the result is: 

 
But because of the way we define wi and wj, this is just: 

(wj - wi)
tx0 

So from the original equation (2) we have : 

(wi - wj)
tx - (wi - wj)

tx0  
 
and after multiplying through by sigma2 the final decision boundary is given 
by: 

(ui - uj)x - (ui - uj)x0  
No let W = ui - uj. Then this boundary is just :  

Wt(x - x0)  
This is called the normal form of the boundary equation. Geometrically, it 
defines a hyperplane through the point x0 that is orthogonal to the vector W. 
But since W = ui - uj then the plane which separates the decision regions for 
classes i and j is orthogonal to the line that links their means.  

Imagine now that P(wi) = P(wj). In this case, the second term in the expression for x0 
completely disappears, leaving only the first term which defines the midpoint of ui and uj. 
Therefore x0 will lie exactly halfway between the means for class i and j, and therefore 
the decision boundary will equally divide the distance between the 2 means, with a 
decision region on either side. This makes intuitive sense. For example, suppose there are 
exactly the same number of oranges as apples on the conveyer belt entering the grocery 
store. If you then observe some color and weight features that are closer to the average 
color and weight for apples than they are to the average for oranges, the observer should 
classify the fruit as an apple. In general if the P(wi) are the same for all c classes, then the 
decision rule is based entirely on the distance from the feature vector x to the different 
mean vectors. The object will be classified to class i if it is closest to the mean vector for 
that class. This type of decision rule is called the minimum-distance classifier.  
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But what if P(wi) != P(wj)? In other words, there are 80% apples entering the store. If you 
observe some feature vector of color and weight that is just a little closer to the mean for 
oranges than the mean for apples, should the observer classify the fruit as an orange? The 
answer depends on how far from the apple mean the feature vector lies. In fact, if P(wi) > 
P(wj) then the second term in the equation for x0 will subtract a positive amount from the 
first term. This will move point x0 away from the mean for class i. If P(wi) < P(wj) then x0 
would tend to move away from the mean for class j. So for the above example and using 
the above decision rule, the observer will classify the fruit as an apple, simply because it’s 
not very close to the mean for oranges, and because we know there are 80% apples in 
total. Below are 2 examples showing this fact: 

Note that as the priors change in these 2 examples, the decision boundary through point x0 
shifts away from the more common class mean. 

  
Below shows 2 bivariate normal distributions, whose priors are 
exactly the same. Therefore, the decision boundary is exactly at the 
midpoint between the 2 means. Note also that the decision boundary 
is a line orthogonal to the line joining the 2 means. 
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Projected contour lines from the above 3D graph. 

 

 

  

A Second example where the priors have been changed. Note that 
the decision boundary has shifted away from the more likely class, 

although it is still orthogonal to the line joining the 2 means. 

Note in the 
last 2 
examples that 
because the 
bivariate 
normal 
densities 
have 
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diagonal 
covariance 
matrices, that 
their contours 
are spherical 
in shape. 
Secondly, 
because each 
class has the 
exact same 
covariance 
matrix, the 
circular lines 
forming the 
contours are 
the same size 
for both 
classes. This 
is because 
identical 
covariance 
matrices 
imply that 
the 2 classes 
have 
identically 
shaped 
clusters about 
their mean 
vectors.  

The position of the decision boundary is not always greatly effected by the prior 
probabilities. After referring again to to the formula for x0, suppose that the variance 
constant was much smaller than the squared term ||(ui - uj)||. Then the second term in the 
equation for x0 would be multiplied by an extremely small constant. Thus even if P(wi) 
was much greater than P(wj), it would not effect the final position of x0 to such an extent 
because the second term would only shift x0 a very small amount away from the mean for 
class i.  

Once again, consider the problem of classifying a random fruit. Suppose you know that 
almost all oranges are exactly one color of orange, and that almost all apples are exactly 
one color of red. Then if you observe a color that is closer to orange than to red, you 
should classify the fruit as an orange, even if there may be 80% apples in total. This is 
because it is now much less likely that your orange fruit is actually an apple, then it was 
when the color distribution for apples had a greater variation. In other words, the better 
our features are, the more we take them into account and ignore the a priori information. 
The worse our features are, the more the decision rule tends to ignore them and listens 
more to the a priori information.  

Obviously not all features that we measure can be guaranteed to be independent of each 
other. What if the weight of a fruit depended somehow on its color? Perhaps ripe fruits of 
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a deeper color actually weighed more. In these cases, the covariance matrix will no 
longer be diagonal. The next section will consider this situation.  

(The tutorial is based on 
http://www.cs.mcgill.ca/~mcleish/644/main.html. More case 
studies are available from that Web site.) 

 

 

 


