Exercise \#6

Due: February 26, 2008

6. Consider the synchronous message-passing model with a complete network graph. Up to f of the n processes may have Byzantine failures. We saw a consensus algorithm in class that satisfies
agreement: all correct processes produce same output, and
weak validity: if all correct processes have input v, they all output v.
This algorithm works regardless of the set of possible input values, as long as $n>4 f$.
A stronger validity condition is
strong validity: the output of every correct process is the input of some correct process.
Note that strong validity is equivalent to weak validity if the set of possible inputs is $\{0,1\}$, but the conditions are not equivalent in general.
(a) Show that the algorithm from class does not satisfy strong validity if the set of possible inputs is $\{0,1,2\}$, even when $n>4 f$.
(b) Show that it is impossible to design an algorithm that satisfies termination, agreement and strong validity if $m=5, n=13$ and $f=3$.
(c) Consider the problem of designing a consensus algorithm that satisfies agreement and strong validity. The domain of possible input values is $\{0,1,2, \ldots, m-1\}$.
Show that the following algorithm satisfies agreement and strong validity when n is sufficiently large, relative to f and m. State clearly how big you are assuming n to be. (Of course, the weaker your assumption, the better.) Without loss of generality, you can assume that Byzantine processes always send a value when they are supposed to, but they may not send the right value. (If a process does not send a value to you when it is supposed to, you can just pretend it sent you 0).

Code for process i :
pref \leftarrow input value
for phase $\leftarrow 1 . . f+1$
round 1 :
send pref to all processes (including self)
suppose you receive k_{j} copies of v_{j} in this round, where $k_{1} \geq k_{2} \geq \cdots \geq k_{m}$.
round 2:
if phase $=i$ then send v_{1} to all processes (including self)
suppose the value received in this round is v_{c}
if $k_{1}-k_{2}>2 f$ then pref $\leftarrow v_{1}$
elsif $k_{c}>f$ then pref $\leftarrow v_{c}$
end for
output pref

