
CSE 3461 W08

Text and Text Entry

2

Types of Text Components

• Output components
– cannot be edited

• Labels, Labeled borders (JLabel, TitledBorder)

• Tool tips, Message Boxes

• Input/output components
– can be edited

• Text fields, Text areas, Editable combo boxes
• Dialog boxes

3

Labels: Example

Label Combo box

Modal button

Label

4

Labels

• Create using JLabel

• Do not react to input events, cannot get keyboard focus
• Used to display information

– in particular, placed adjacent to a component that has a
keyboard alternative but can’t display it

• Position is determined by Layout Manager
• Advantage:

– The information it provides can be useful; aid user’s
performance of task

• Disadvantage:
– Uses screen real estate
– Poor wording may be worse than none at all

5

Labeled Borders: Example

Labeled border

This group pertains

to Colors

Labeled border

This group

pertains to Links

6

Labeled Borders

• The setBorder method is defined for all instances of
JComponent

– Used to create visual clue about groupings
– A label for the grouping is optional

• The parameter is an instance of a Border
• Border is an interface

– AbstractBorder is an abstract class that implements it
– TitleBorder extends AbstractBorder

E.g., in DemoButtons:
JPanel sizeGroupPanel = new JPanel();

sizeGroupPanel.setBorder(

new TitledBorder(new EtchedBorder(), "Size"));

7

Text Fields and Text Areas

• Different types:
– Text Field: single line
– Text Area: multiple lines
– The abstract class JTextComponent has the

subclasses JTextField, JTextArea
• Challenges for design:

– How to validate the text that has been input?
– How to navigate within and between text

elements?

8

• Similar to a combo box, except that user
may also enter text directly

• Same challenges as text fields and areas
– validation, navigation

• Editable and non-editable combo boxes
are both instantiated from JComboBox
– use the methods: setEditable(true),
setEditable(false)

Editable Combo Boxes

9

Navigation

• All components have a focus state
– The possible focus states are in focus or out of focus
– For a key press to affect a component, the component

must have focus
– Visual clues are given to show which component has

focus
• I-beam cursor appears, special highlighting

• Every time the focus changes, a FocusEvent is
generated
– a component loses focus, another gains focus,

10

Navigation

• A component generally gains the focus by the
user:
– clicking it
– tabbing to it, or
– otherwise interacting with a component.

• A component can also be given the focus
programmatically
– e.g., a component can request the focus when its

containing frame or dialog is made visible
• The focus traversal policy determines the order in

which a group of components are navigated

11

Dialog box Invalid input

Message box

Message Box: Example

12

Message Boxes

• A message box (aka dialog box) is a popup window
• Primary purpose is to govern the interaction

– presents a text message to the user
– seeks input for confirmation (and to close the box)

• Functions:
– Notify the user of a problem (e.g., invalid choice)
– Notify the user of potentially destructive outcome (e.g.,

overwrite a file)
– Provide information

13

Message Boxes vs Tool Tips
• Size/Complexity of message

– message boxes allow more text
• Impact on flow of interaction

– message boxes must be dismissed with user input
action

– tool tips can be made to disappear through little user
action

– message boxes demand immediate attention
– can’t close the message box (user is required to make

a choice or to provide confirmation)
– user is not able to make use of other widgets

14

Input-Handling Techniques
For actions with potentially serious consequences:
• require an explicit button click or key press

before proceeding
• disable “enter” (which is otherwise the default

action)
• when is it better to allow the action and provide

undo vs. the advanced warning?

15

Input-Handling Techniques
For invalid input:
• provide feedback (e.g., alarm tone or visual

feedback)
• feedback should not only indicate the problem,

but also how it can be fixed

• Take advantage of user consistency (e.g., change
the position of buttons from one invocation to
the next)

16

Input-Handling Techniques
• Be aware of that many users are conditioned

by too many message boxes:
– Some dismiss them with out reading their contents
– Can subvert this by being inconsistent

17

Hitting ENTER produces…

Button positions change from one invocation to next

Example

18

Example

DemoMessageBox.java

19

Validating Input

• How to handle input?
– Should it be in the format required by the application

or in the format that the user wants to (is able to)
provide?

– The distinction between valid and invalid data
– Semantic Error vs. Format Error

• When to intervene?
– Solicit Input Accept Proceed to next step

• What sort of feedback?
– popup message, generate audio alarm, system

behaviour…

20

What type of text-based information might users provide?
– Numeric values

• weight, age, font size
• Are floating point values allowed? How many decimal

places?
• Are negative numbers allowed?

– Text
• first name, surname, font name

– Mixed
• Postal or zip code
• License plate number
• Date
• Times

• Semantic Error vs. Format Error

Input Validation

21

Text Fields and Text Areas

• Given an instance of a text field or area:
– The contents of the instance are contained in a

data model, say d
– The method getText() will return the

contents of d as an instance of a String
– The default data model is PlainDocument

22

Text Fields and Text Areas

• How can the user cause some text to be
entered?
– ______________________
– Let us denote this text by String s

• This action causes the insertString
method of d to be invoked
– this causes the string s to be added to the data

model (at the appropriate offset)

23

• Suppose we want our text field to accept
only strings of digits

• What possible strategies might be used to
validate this?
1. ______________
2. ______________
3. ______________

Strategies for Validation

24

Strategy #1: Keystroke-level

• Register a KeyListener on the text
component
– when the user types a key, an key event ke is

generated
– if you don’t intercede, then the character gets

passed to the insertString method of the data
model

• use the method ke.getKeyChar() to access the
character

– you can intercede
• you can consume the event

25

Strategy #2: Focus-level

• Register a FocusListener on the text
component
– when the user tries to transfer focus to

another component, a focus event fe is
generated

– check what contents of the text component is
• if the contents are invalid, don’t let the focus be

transferred away

26

Strategy #3: Data Model-level

• Use a different data model than PlainDocument

– recall that the insertString method gets invoked when the
user causes text to be entered

– if you override the method, then you can inspect the text that
was entered

• need to create a subclass of PlainDocument

• if the entered text is valid, invoke the super’s insertString

method in order to add it to the data model
• if not, don’t add it to the data model

27

