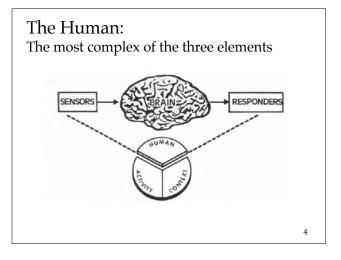
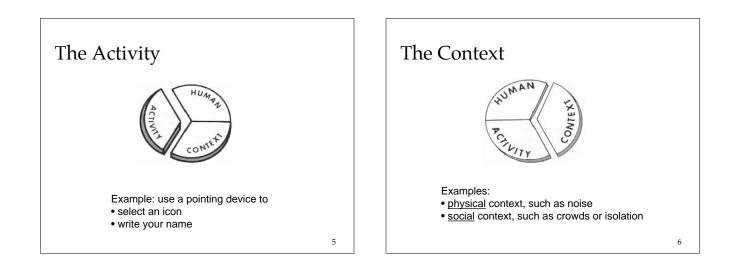
COSC 3461

Principles of UI Design

Principles of Design


- "Avoid unnecessary burden" – one of the fundamental principles for design
- How is burden is created?
 - what things do human users find difficult?
 - what things do human users find easy?


2

Human Performance Model

• People performing in systems have in common that they are each <u>somebody</u>, doing <u>something</u>, <u>someplace</u>" (Bailey, 1996)

7

Parameters of Human Performance

- Sensory-Perceptual processes
 - detection and discrimination of sounds
 - detection and discrimination of visual stimuli
 - visual scene analysis
- Motor processes
 - production of input actions
- Cognitive processing
 estimating
 - multitasking
- Combined processing
 - reaction to stimuli (latency, accuracy)

<u>Parameters of Human Performance</u> Key Terms

- Reaction time (RT):
 - the elapsed time between the presentation of a sensory stimulus and the subsequent behavioral response
- Mental chronometry:
 - the use of response time in perceptual-motor tasks to infer the content, duration, and temporal sequencing of cognitive operations

Reaction to Stimuli

• Example task:

- Subject faces a monitor with two regions
 - e.g., R_L (left) and R_R (right)
- Subject is instructed to press this button when he or she sees a change in $R_{R'}$ but not R_{L}
 - (or vice-versa)

<u>Reaction to Stimuli:</u> <u>Average Data</u>

	Typical time req'd (msec)
Sensory receptor	1-38
Neural transmission to brain	2-100
Cognitive-processing delays (brain)	70-300
Neural transmission to muscles	10-20
Muscle latency and activation time	30-70
Total:	113-528
	10

Sensory Processing

- Humans are attuned to various forms of energy
 - have multiple "windows" through which to experience the environment

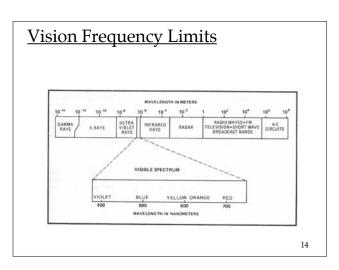
 mechanical stimuli:
 auditory, vestibular, somatosensory senses

 chemical stimuli:
 olfactory and gustatory senses

 light stimuli:
 vision

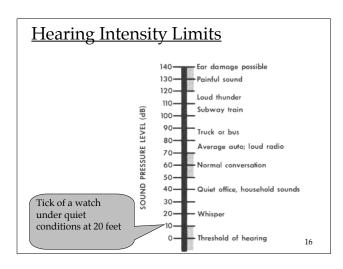
<u>Terminology</u>

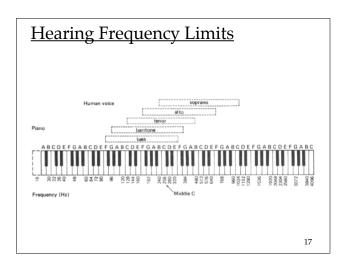
Sense	Other terms	
Vision	Sight	
Audition	Hearing	
Gustation	Taste	
Olfaction	Smell	
Vestibular	Tilt and acceleration of head	_
Somatosen	sory	
	Touch, pain	
	Proprioreception	
		12


11

Detection Thresholds

Sense	Detection Threshold
Vision	Candle flame seen 30 miles on a dark clear night
Audition	Tick of a watch under quiet conditions at 20 feet
Gustation	Teaspoon of sugar in 2 gallons of water
Olfaction	Drop of perfume diffused into a three- room apartment
Touch	Wing of a bee falling on your neck from a distance of 1 cm

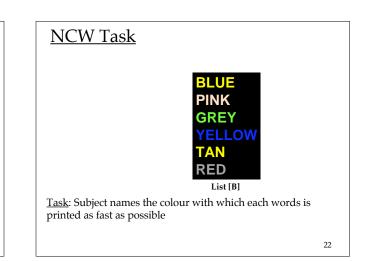

-13

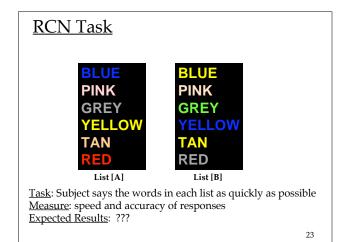

15

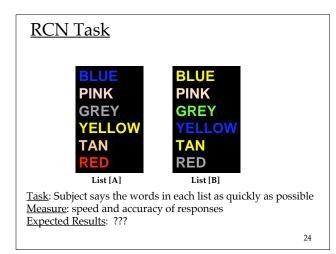
Measurement of Auditory Acuity

- Hearing is a mechanical sense
 - waveforms have a frequency and an amplitude
 - frequency is perceived as pitch
 - · amplitude/intensity is perceived as loudness
 - Two Scales (for measuring hearing loss):
 - Sound Pressure Level (SPL)
 - normal hearing thresholds vary with the frequency
 - Hearing Level (HL)
 - scale has been adjusted
 - the scale for each frequency is moved so that normal hearing level is 0 dB

Interaction of Cognitive and Visual Processing


- RCN: Read color names
- NCW: Naming color words


RCN Task RCN Task BLUE BLUE PINK PINK GREY GREY **YELLOW ELLOW** ٩N TAN RED ED List [A] List [B] Task: Subject reads aloud the words in the list as quickly as Task: Subject reads aloud the words in the list as quickly as possible possible 19 20


NCW Task

 \underline{Task} : Subject names the colour with which each words is printed as fast as possible

Interaction of Cognitive and Visual Processing

- The results of the RCN and NCW tasks:
 - subjects perform better for List A than List B
 - the visual information "primes" the lexical retrieval process (in the case of RCN)
 - the lexical information "primes" the visual process (in the case of NCW)
- This illustrates interference in the reaction time of a task
- This described as the "Stroop Effect"
 - after Stroop, who conducted this research (1935)
 - sometimes referred to as "Stroop Interference"

25

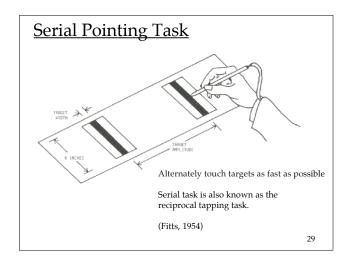
27

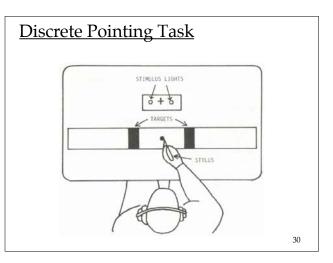
The Stroop Effect in Interfaces

1	ABC 2	DEF 3
GHI	JKL	MNO
4	5	6
PQRS	TUV	WXYZ
7	8	9
*		#

Consider the numeric keypad above

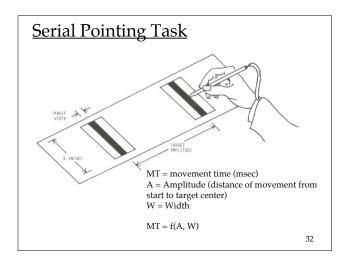
Is there Stroop interference when entering a phone number, such as 1-800-HELLO, on a telephone keypad?


26


Production of Input Actions

- The term <u>mimetic</u> refers to a style of interaction that mimics real-life actions
 - e.g., pointing/dragging in real-life vs. pointing/dragging with a pointer (such as mouse, trackball, etc)
- How fast (or accurately) can a human manipulate on-screen objects?
 - E.g., point, drag

Production of Input Actions


- Pointing and dragging actions can be elicited by special experimental tasks
 - serial pointing
 - discrete pointing
 - These experimental arrangements are commonly described as following the Fitt's paradigm

Fitts' Law

- Fitts' Law is a model
 - The model predicts time required by humans to perform rapid, aimed movements
- MT denotes Movement Time (msec)
 - Discussion: of which variables would you expect MT to be a function?

Fitts' Law

 $MT = a + b \log_2(2A/W)$

where:

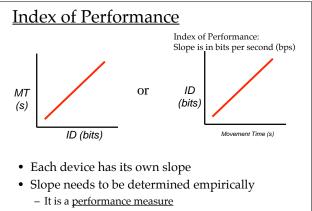
MT = movement time (msec)

a, b = regression coefficients

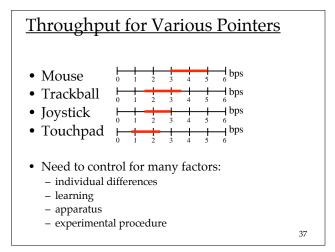
A = distance of movement from start to target center

W = width of the target

33


Index of Difficulty

- Fitts' actual proposal:
 - the movement time (*MT*) to select a target has a linear correlation to the Index of Difficulty (*ID*)
 - *MT* measured in time (msec)
 - ID measured in information (bits)
- How does this make sense?
 - How can ID be measured in bits?


34

"Information Processing"

- Does the human motor system have a capacity to process information?
- Shannon, Wiener, and others proposed a formal model of information in the 1940s
- Introduced terms such as "probability", "redundancy", "bits", "noise", and "channels"
 "Information" models of psychological processes
- emerged in the 1950s
 - Created analogs of information-theoretic terms for human behaviour
 A signal gets transmitted through a medium and is perturbed by noise
 - The effect of noise is to reduce the information capacity of the channel from its theoretical maximum
 - Capacity measured in bits/sec
 - ipucity incustrice in pris, se

– The steeper the slope, the greater the throughput $_{36}$

