
CSE 3461

Layout Organization and
Management

2

Models for Component Layout

1. Absolute (aka fixed)
– Control for component size and position

2. Struts and springs
– Control for component position

3. Variable intrinsic size
– Control for component size

3

Absolute Layout

• The principle is to specify the position and the
size of each component
– provide absolute values (not relative)
– position is specified by x and y screen coordinates

(typically in pixels, origin in top-left corner)
– size is specified by width and height values (typically

in pixels)

4

Example

DemoAbsolute.java

5

Absolute Layout

• Disadvantages
– Widgets retain their position and size when window is resized
– Enlarging: too much empty space (more in Module 6,

Evaluation)
– Shrinking: components get lost (how might this instead be

handled?)
– Difficult to modify layout; need to modify many ‘magic

numbers’

• Advantages
– Widgets retain their position and size when window is resized
– Can be simple to specify layout

6

Struts and Springs

• Idea: specify relative position of components
– the specification is given in terms of constraints
– the constraints specify geometric relationships

between the components and the borders of
container

– the sizes and positions of the components are
determined by layout manager

• the layout manager calculates the (x,y) coordinates and
component sizes so that the specified constraints
relationships are maintained, to the degree that is possible.

7

Struts and Springs

• Struts are regions of a fixed, inflexible size
– represented by

• Springs are regions that have a certain size
initially, but can be compressed or
stretched as needed
– represented by

Text Field Button

8

Struts and Springs

Advantages
– When the window is resized, components

will automatically be repositioned
• position is determined by layout manager’s

solution to constraint equations

– Easy to use
– Handles window resizing appropriately

9

Variable Intrinsic Size

• Idea: specify intrinsic size values for widgets
– intrinsic means pertaining to the inherent or essential nature of a

thing (cf extrinsic, originating from the outside, external)
– intrinsic values capture a range of acceptable values: preferred

size, minimum size, maximum size
– let layout manager determine which size value should be used

• During layout, components report their size properties
to the layout manager (recursively, if necessary)

• Designers have limited control over this
– Some layout managers respect size properties, while others do

not!

10

Variable Intrinsic Size

• Advantages
– Layout manager determines appropriate

values

• Disadvantages
– Designers have limited control over this
– Some layout managers respect size

properties, while others do not!

11

Java’s Layout Managers

1. BorderLayout* spec. purpose

2. BoxLayout very flexible

3. CardLayout spec. purpose

4. FlowLayout** very simple

5. GridBagLayout very simple

6. GridLayout very simple

7. SpringLayout very flexible

* default layout manager of content pane
** default layout manager of JPanel

12

BorderLayout

• Places components in one of five regions
– North, South, East, West, Center
– all extra space is placed in center

• Support for struts and springs
– Struts (YES)

• Can specify ‘hgap’, ‘vgap’

– Springs (NO)
• Inter-component space is fixed

• Support for variable intrinsic size (YES)
– Components expand to fill space in region

13

BorderLayout

• Components ‘expand’ (or ‘stretch’) to fill
space as follows

North

South

West EastCenter

Expand direction

14

Example

DemoBorderLayout.java

usage: java DemoBorderLayout arg1

where 'arg1' = strut size in pixels

Example (next 2 slides)

15

Example

Launch Resize

Invocation: java DemoBorderLayout 0

strut size=0

Variable intrinsic size

16

Example

Launch Resize

With struts : hgap = vgap = 10 pixels

Invocation: java DemoBorderLayout 10

Struts

17

BoxLayout

• Components placed in a single row or column
• Alignment can be specified
• Components do not wrap
• Support for struts and springs

– Struts (YES)
• Can specify ‘rigid areas’

– Springs (YES)
• Can specify ‘horizontal glue’ or ‘vertical glue’

• Support for variable intrinsic size (YES)
– Components expand if maximum size property is

set
18

Example

DemoBoxLayout.java

usage: java DemoBoxLayout arg1 arg2

where 'arg1' is one of

 c = centre alignment

 l = left alignment

 r = right alignment

and 'arg2' is one of

 e = enable struts and springs demo

 d = disable struts and springs demo

Example (next 2 slides)

19

Example

Invocation: java DemoBoxLayout r d

Invocation: java DemoBoxLayout l d

Invocation: java DemoBoxLayout c d

Default is left align 20

Example

Invocation: java DemoBoxLayout c e

Launch Resize Resize more

Struts (10 pixels)

Springs

Enable struts and springs demo

21

FlowLayout

• Components are placed one after another, from left to right
– If container isn’t wide enough, a new row is started
– The group can be aligned: left, center, right
– Space is added before/after/below the entire group of

components to fill available space
• Support for struts and springs

– Struts (YES)
• Can specify ‘hgap’, ‘vgap’

– Springs (NO)
• Inter-component space is fixed

• Support for variable intrinsic size (NO)
– Component size is fixed

22

Example

DemoFlowLayout.java

usage: java DemoFlowLayout arg1 arg2

where 'arg1' = strut size in pixels

and 'arg2' is one of

 c = center alignment

 l = left alignment

 r = right alignment

Example (next 2 slides)

23

Example

Launch

Resize

Default for FlowLayout…

struts : hgap = vgap = 5,

alignment = center

Invocation: java DemoFlowLayout 5 c

Fill available space before/after/below group of components 24

Example

Launch

Resize

Invocation: java DemoFlowLayout 10 r

With struts : hgap = vgap = 10,

alignment = right

25

GridLayout

• A number of rows and columns are requested
• Components are arranged in the grid

– Components are made equal in size
• Support for struts and springs

– Struts (YES)
• Can specify ‘hgap’, ‘vgap’

– Springs (NO)
• Inter-component space is fixed

• Support for variable intrinsic size (YES)
– Components expand to fill rectangle

26

Example

DemoGridLayout.java

usage: java DemoGridLayout arg1

where 'arg1' = strut size in pixels

Example (next 2 slides)

27

Example

Launch Resize

Invocation: java DemoGridLayout 0

No struts

Equal-size rectangles

28

Example

Launch Resize

Invocation: java DemoGridLayout 10

With struts : hgap = vgap = 10

29

Organization and Layout of
Components

• General guidelines:
– Present all components necessary for

performing an action or making a decision in
one window, whenever possible

– Organize components into semantically-
coherent groupings

– Place groupings in window in a layout that:
• is balanced and aligned
• supports flow of interaction

30

Flow of Interaction

• Important, frequently-used controls at the top
left

• Maintain top-to-bottom, left-to-right flow
• Dependent controls should be below or to the

right of their respective enabling controls
• Buttons that affect entire window should be

grouped in an horizontal array
– the grouping should be placed at the bottom and

centered horizontally

31

Alignment

• Alignment assists users’ navigation of the screen
• Inter-group alignment and intra-group

alignment must be considered
• A group is

– a (labeled) set of radio buttons
– a (labeled) set of semantically-related check-boxes
– a (labeled) set of two or more related fields or

controls

32

The 5° Heuristic

• Create groups whose size is a “visual chunk”
that corresponds to 5° of visual angle

• Visual acuity is best at center of fixation; relative
acuity is halved at 2.5° from center
– Diameter of circle that corresponds to 5° of visual

angle depends on distance between eye and screen
– With a distance of 19 (475mm) from eyes to screen,

diameter of “visual chunk” is 1.67 (42mm)

33

Guidelines for Borders

• Groupings can be enhanced by the
addition of borders

• Do not place borders around:
– single entry fields
– single combo boxes, spin boxes, sliders
– command buttons

34

Examples

• Ex 1 “Story Info”
• Ex 2 “Customer Personal Details”
• Ex 3 “Footnote Options”
• Ex 4 “Location of Files”

Galitz, W. O., The Essential Guide to User Interface Design,
Wiley, 2002. pp. 235-248, 684-700

35

Example 1 – “Story Info”

Version 0

36

Example 1 – “Story Info”

Eye Movements

37

Example 1 – “Story Info”

After redesign, Version 1Version 0

38

Example 1 – “Story Info”

After further modification, Version 2

Version 1

39

Example 4 – “Location of Files”

Version 0

40

Example 4 – “Location of Files”

Eye Movements

41

Example 4 – “Location of Files”

Version 0 After improvement, Version 1

42

Example 3 – “Footnote Options”

Version 0

43

Example 3 – “Footnote Options”

Eye Movements

44

Example 3 – “Footnote Options”

Version 0

After improvement, Version 1

45

Example 2 –
“Customer Personal Information”

Version 0

46

Example 2 –
“Customer Personal Information”

Eye Movements

47

Example 2 –
“Customer Personal Information”

Version 0

After improvement, Version 1

48

Example 2 –
“Customer Personal Information”

After further modification, Version 2

Version 1

49

Example 2 –
“Customer Personal Information”

Another version (version 3)

Version 2

