
CSE 3461

Focus Subsystem

2

The Focus Subsystem
• Many components — even those primarily

operated with the mouse, such as buttons — can
be operated with the keyboard.

• For a key press to affect a component, the
component must have the keyboard focus.

• In the case of multiple windows,
– the focused window is the window that contains the

focus owner.

3

The Focus Subsystem
• From the user's point of view, the component

with the keyboard focus is generally prominent
– E.g. a dotted or black border (can be altered

programmatically)
• The window containing the component is also

more prominent than other windows onscreen.
• These visual cues let the user know to which

component any typing will relate.
• Only one component at a time in the window

system can have the keyboard focus.

4

How does a Window gain focus?
• Depends on the windowing system

– when if becomes the front window? (Microsoft
Windows)

– when the cursor is on it? (Solaris)
– The behavior of the Window.toFront method can

be different across windowing systems.

• There is no foolproof way, across all platforms,
to ensure that a particular window always gains
the focus.

5

How does a Component gain Focus?

• A component generally gains the focus
when the user clicks it, or when the user
tabs between components, or otherwise
interacts with a component.

• A component can also be given the focus
programmatically

6

Focus Traversal Cycles
• A focus cycle (or focus traversal cycle) is a set of

components that share a common ancestor in the
containment hierarchy.

• The focus cycle root is the container that is the
root for a particular focus traversal cycle.

• A focus cycle root can itself contain one or more
focus cycle roots.

• In a hierarchy of focus cycle roots, upwards
traversal takes the focus out of the current cycle
into the parent cycle.

7

Focus Traversal Policy
• A focus traversal policy determines the order in

which a group of components are navigated.
• Within a focus cycle, components can be

navigated in a forward or backward direction.
• Swing provides the LayoutFocusTraversalPolicy

class
– it determines the order of navigation
– Default: the order in which the components were

added to their container determines order in the focus
traversal cycle

– FTP can be based on layout manager-dependent
factors, such as size, location, and orientation of
components. 8

Focus Traversal Cycles
• By default, every JWindow and JInternalFrame

component can be a focus cycle root.
• The following Swing objects can be focus cycle roots:

– JApplet

– JDesktopPane,
– JDialog,
– JEditorPane,
– JFrame,
– JInternalFrame, and
– JWindow.

• While it might appear that JTable and JTree objects
are focus cycle roots, they are not.

9

JWindow and Focus
• A JWindow component's owning frame must be

visible in order for any components in the
window to get the focus.

• By default, an invisible owning frame is created
for JWindow components
– Thus, components in the JWindow component might

not be able to get the focus.
• The solution:

– specify a visible owning frame when creating the
JWindow component

– use an undecorated JFrame component instead.

10

Default Focus Traversal Keys
• In most Look and Feel models, components are

navigated using the Tab and Shift-Tab keys.
• These keys are the default focus traversal keys

– Tab shifts the focus in the forward direction.
– Shift-Tab moves the focus in the backward direction.
– The Control key is used by convention to move the

focus out of any component that treats Tab in a
special way, such as JTable.

11

Default Behaviours
• Example: FocusConceptsDemo

– The first button has the initial focus.
– Tabbing moves the focus through the buttons into the

text area.
– Additional tabbing moves the cursor within the text

area but not out of the text area because, inside a text
area, Tab is not a focus traversal key.

– However, Control-Tab moves the focus out of the text
area and into the first text field.

– Likewise, Control-Shift-Tab moves the focus out of
the text area and into the previous component.

12

KeyboardFocusManager
• The KeyboardFocusManager is a critical element

of the focus subsystem.
• It manages state and initiates changes.
• The keyboard manager tracks the focus owner

— the component that receives typing from the
keyboard.

• The KeyboardFocusManager dispatches key
events:
– recall that input components (e.g., JTextField) have

UI delegates
– one of the responsibilities of the UI delegate is to

install any required listeners

13

Programmatic Control of
The Focus Subsystem

• The focus subsystem is designed to do the
right thing as invisibly as possible.

• In most cases it behaves in a reasonable
manner.

• If the focus subsystem doesn’t behave as
desired, its behavior can be tweaked in
various ways programmatically.

14

Programmatic Interventions
1. The ordering is as desired, but the first

component doesn’t gain focus as desired.
2. The focus traversal ordering is wrong.
3. A component must to be prevented from

losing focus, or you need to check a value in
a component before it loses focus.

4. A custom component is not getting the
focus.

15

Initial Component Focus
Example

//Make textField get the focus whenever frame is activated.

frame.addWindowListener(new WindowAdapter() {

public void windowGainedFocus(WindowEvent e) {

textField.requestFocusInWindow();

}

});

• This will give a particular component the focus every
time the window gains the focus

• Other triggers: window opened, window de-iconified,
etc

16

Initial Component Focus

• How to ensure that a particular component
gains the focus the first time a window is
activated?
– Invoke the requestFocusInWindow method on the

component after the component has been realized,
but before the frame is displayed.

– Alternatively, you can apply a custom
FocusTraversalPolicy to the frame and call the
getDefaultComponent method to determine which
component will gain the focus.

17

//...Where initialization occurs...

JFrame frame = new JFrame("Test");

JPanel panel = new JPanel(new BorderLayout());

//...Create a variety of components here...

//Create the component that will have the initial focus.

JButton button = new JButton("I am first");

panel.add(button);

frame.getContentPane().add(panel); //Add it to the panel

frame.pack(); //Realize the components.

//This button will have the initial focus.

button.requestFocusInWindow();

frame.setVisible(true); //Display the window.

18

Altering Focus Traversal Order

If the focus traversal ordering is wrong:
• change the containment hierarchy

– e.g., change the order that the components are
added to their containers

• create a custom focus traversal policy

19

Prevent Focus Loss

• A component must to be prevented from
losing focus

• you need to check a value in a component
before it loses focus.

• Input verification is a solution to this
problem.

InputVerificationDemo.java

InputVerificationDialogDemo.java
20

Failure to Gain Focus

• A custom component is not getting the
focus.
– ensure all requirements are satisfied

21

Focus Traversal Keys
• The default focus traversal keys can be changed

programmatically:

Set forwardKeys = getFocusTraversalKeys(

KeyboardFocusManager.FORWARD_TRAVERSAL_KEYS);

Set newForwardKeys = new HashSet(forwardKeys);

newForwardKeys.add(

KeyStroke.getKeyStroke(KeyEvent.VK_ENTER, 0));

setFocusTraversalKeys(

KeyboardFocusManager.FORWARD_TRAVERSAL_KEYS,
newForwardKeys);

This adds Enter as a forward focus traversal key

22

Making a Custom Component
Focusable
• For a component to gain the focus, it must

satisfy three requirements:
– it must be visible, enabled, and focusable.

• A call to the setFocusable(true) method makes
the component focusable.

• An alternative approach: explicitly provide an
input map of key bindings (to be discussed later)

23

Customizing Focus Traversal

• You can set a focus traversal policy on any
Container:
– using the setFocusCycleRoot method, or
– pass focus traversal policy providers to the
FocusTraversalPolicy methods

24

Customizing Focus Traversal
• Implementing customized focus traversal only

makes sense if the particular Container is a focus
traversal policy provider.
– if the container is not a focus cycle root, it may have

no apparent effect.
– Use the isFocusTraversalPolicyProvider() method

to determine whether a Container is a focus traversal
policy provider.

– Use the setFocusTraversalPolicyProvider() method
to set a container for providing focus traversal policy.

FocusTraversalDemo.java

25
TrackFocusDemo.java

Tracking Which Component has
Focus
• An application may need to track which

component has the focus.
– to dynamically update menus, status bars, etc.

• If you need to track the focus only on specific
components
– implement a FocusEventListener
– register a PropertyChangeListener on the
KeyboardFocusManager.

• The property change listener is notified of every
change involving the focus, including changes to
the focus owner, the focused window, and the
default focus traversal policy.

26

Timing Focus Transfers

• Focus transfers are asynchronous.
• This quality can lead to some odd timing-

related problems and assumptions,
especially during automatic transfers of
the focus.

27

Timing Focus Transfers
• For example, imagine an application with a

window containing:
– a Start button,
– a text field, and
– a Cancel button.
(added in that order)

• In this example, the desired behavior is that:
– the Start button has the initial focus
– when the Start button is clicked, it is disabled, and

then the Cancel button receives the focus.

28

Timing Focus Transfers

• How to implement this behavior?
– add the components to the container in the

desired order
– create a custom focus traversal policy.
– programmatically (if, for some reason, the above

two options are not possible)

29

Timing Focus Transfers
• Programmatically:

public void actionPerformed(ActionEvent e) {

//v1: This works.

start.setEnabled(false);

cancel.requestFocusInWindow();

}

cf
public void actionPerformed(ActionEvent e) {

//v2: This does not work.

cancel.requestFocusInWindow();

start.setEnabled(false);

}

30

Timing Focus Transfers
• V1:

– the focus goes from the Start button to the Cancel button, rather
than to the text field.

• V2:
– The call to the requestFocusInWindow method initiates the

focus transfer, but it does not immediately move the focus to the
Cancel button.

– When the Start button is disabled, the focus is transferred to the
next component (so there is always a component with the focus)

– In this case, it would then move the focus to the text field, not to
the Cancel button.

– End result: focus is requested on the Cancel button before it has
left the Start button

31

Timing Focus Transfers
Morale:

– Make focus requests (in some situations) only once all other
changes that might affect the focus have been completed.

• For instance:
– Hiding the focus owner.
– Making the focus owner non-focusable.
– Calling the removeNotify method on the focus owner.
– Doing any of the above operations to the container of the focus

owner, or causing changes to the focus policy so that the
container no longer accepts the component as the focus owner.

– Disposing of the top-level window that contains the focus
owner.

32

User Action Event that Occurs
click a button ActionEvent

press Enter while in a text field ActionEvent

choose a menu item ActionEvent

close a frame (main window) WindowEvent

press a mouse button MouseEvent

(while the cursor is over a component)
 move the mouse over a component MouseMotionEvent

component becomes visible ComponentEvent

component gets the keyboard focus FocusEvent

Table or list selection changes ListSelectionEvent

Types of Events

33

Java’s Event Class Hierarchy

EventObject

AWTEvent

ActionEvent ComponentEvent

InputEvent WindowEvent

MouseEvent KeyEvent

A subset of Java’s Event Class
Hierarchy is shown here

See Java API for full hierarchy

FocusEvent

34

Listeners and Corresponding
Adapters
Listener interface (# methods) Adapter class
WindowListener (7) WindowAdapter

ActionListener (1) not defined

Later we’ll discuss…

KeyListener (3) KeyAdapter

MouseListener (5) MouseAdapter

MouseInputListener (7)* MouseInputAdapter

ItemListener (1) not defined

FocusListener (2) FocusAdapter

* MouseInputListener combines MouseListener
 and MouseMotionListener

