
CSE3461

Control Flow Paradigms:
Reacting to the User

2

Control Flow: Overview

• Definition of control flow:
– The sequence of execution of instructions in a

program.
– Control flow is determined at run time by the input

data and by the control structures (e.g., "if"
statements) used in the program.

• In the case of sequential control:
– Control starts are the first instruction in the main

method
– Control flows from the present instruction to the next

one until the last one is reached, at which point the
program terminates.

3

Control Flow: Revisited

• In more abstract terms, the flow of control is:
– the thread(s) of execution in a software system, and

their reaction to exogenous events, if any
– An exogenous event is an event from outside the

system (e.g., user input, disk space becomes full,
network connection is lost)

• Two primary mechanisms for control flow:
– Sequential
– Event Driven

4

An Example of Sequential Control

Example 2.1:
DemoTranslateEnglishConsole.java

Prompt the user

User input

Output results



5

Notes about Code Examples

• Examples in this class SHALL NOT make use of
the packages type.io.*, type.util.*

– Use of these packages will not be allowed for the
assignments

• Use the command line interface for compiling
and invoking applications; use editor of your
choice
– use your own Integrated Development Environment

(IDE) if you wish (e.g., Eclipse)

6

Notes about Ex 3.1

• Mechanisms that allows user to exit program:
– provide “sentinel”
– CTRL-Z is null in Windows (CTRL-D in Unix)

7

Sequential Programs (1)

• Typical flow of control:
– Prompt the user
– Read input from the keyboard
– Parse the input (in order to interpret the user’s action)
– Evaluate the result
– Generate output
– Continue until application determines it is time to

stop (or until user terminates application)

8

Sequential Programs (2)

• In sequential programs, control is held by the
application:
– the application decides when the user may perform input

actions
– application tells user whether it’s ready for more input
– user enters more input and it is processed

• Examples:
– Command-line prompts (DOS, UNIX)
– LISP interpreters

• The user is required to respond to the program
– Shouldn’t it be the other way around?  Shouldn’t the program respond

to the user?



9

Sequential Programs (3)

Advantages
– Architecture is iterative (one step at a time)
– Easy to model using flowcharts or finite state

automata
– Relatively easy to build

Limitations
– Difficult to implement complex interactions
– Only a small number of features may be

practical to implement
– The sequence in which the interaction may

proceed must be pre-defined

10

Event-driven Programs

• All communication from the user to the
application occurs via events

• An event is an action that happens:
– A mouse button pressed or released
– A keyboard key is pressed or released
– A window is moved, resized, closed, etc.

• Code is set up and waiting to handle
these events

11

An Example of an Event-Driven
Application

Example 2.2:
DemoTranslateEnglishGUI.java

12

Notes about Ex 3.2

The main method has only four lines:

public static void main(String[] args)

{

DemoTranslateEnglishGUIFrame frame

= new DemoTranslateEnglishGUIFrame();

frame.setTitle("DemoTranslateEnglishGUI");

  frame.pack();

  frame.show();

}



13

import ...

public class NameOfProgram

{
public static void main(String[] args)

{

}

}

public class NameOfProgramFrame

{

}

Identify the packages containing
classes used in the program

1. Construct a JFrame
2. Give it a title
3. Cause the frame to be sized
4. Cause the frame to be visible

Naming convention (just add
“Frame” to name of program)

The core of the application
is found here

Only one public class per file

14

import ...

public class NameOfProgram

{

public static void main(String[] args)

{

}

}

class NameOfProgramFrame extends JFrame

{

}
Our instance of JFrame is actually an
sub-class instance — it is a JFrame
extended and modified to suit our needs

15

Basic Concepts

• The graphical user interface consists of
components
– all components are instances of JComponent (or

child classes)
• Containers (aka non-atomic components) can contain other

components (e.g., JTabbedPane)
• Atomic components cannot contain other components (e.g.,

JComboBox, JButton, JLabel)

• All components have a position within the
containment hierarchy
– atomic components can exist only as leaves, but not

all leaves need to be atomic
– a top-level container must be at the root of the

hierarchy  — the three top level components are
JFrame, JApplet, and JDialog 16

Containment Hierarchy for
JFC/Swing

JFrame

Content pane

JPanelJPanel

JButton JLabel etc.

etc.

JPanel

JButton JTextField



17

What is a JFrame?

1. It is a window
– It has window decorations, such as borders, a titlebar

and title, and buttons for closing and iconifying the
window

– The style of these decorations is derived from the
“Look-and-Feel”

2. It is a top-level container
– It has a content pane and a menu bar

• The menu bar is optional

– It is the root of a containment hierarchy

18

Instantiating the JFrame

1. Must have a look and feel
– if not explicitly specified, resort to default   

2. Must specify reaction to close operation
– otherwise, resort to default

3. Must add components to content pane
– otherwise, content pane will not appear, frame will

consist only of titlebar
– must define components, add them to contentPane,

then register listeners on them

19

Anatomy of a JFrame

Icon

Title Minimize
Button

Maximize/”Restore
Down”Button

Close
Button

An instance of a JFrame without a content pane

Content pane
(grey region 

inside borders)
Borders

Title bar

20

Different Types of “Look and Feel”
for a JFrame

Using Java’s Look and Feel Using MS Window 2000’s Look and Feel

Using MS Window XP’s Look and Feel



21

Instantiating the JFrame

1. Must specify look and feel
– otherwise, resort to default

[we’ll use the dafault for the time being]

2. Must specify reaction to close operation
– otherwise, resort to default

3. Must add components to content pane
– otherwise, content pane will not appear, frame will

consist only of titlebar
– must define components, add them to contentPane,

then register listeners on them

22

Examples

DemoVeryBasicV1, V2, V3, V4 , V5
• A trivial application to demonstrate

some basic things about frames
– three different versions
– V1: behaviour for close action left as the default
– V2: behaviour for close action specified using

method from JFrame
– V3,V4,V5: behaviour for close action specified

using a method that is inherited from Window

23

Responding to the “Close” Operation

• An instance of a JFrame knows that something
needs to be done when user performs a “close”
on it
– “close” performed on the frame when the close-

application button or keystroke is used
• rightmost button in top right-hand corner; Windows

keyboard shortcut, ALT-F4

• The default behaviour for close is to hide the
window  (see DemoVeryBasicV1)
– We’ll next look at two ways to change this default

24

Responding to the “Close” Operation

Option #1 (DemoVeryBasicV2)
• Invoke the following method in the constructor of the

JFrame subclass:

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

(alternatively, can invoke the method on the instance of
the JFrame in the main method)

• The default is:
setDefaultCloseOperation(JFrame.HIDE_ON_CLOSE);

See the API for the class JFrame for this method



25

Responding to the “Close” Operation

Option #2 (DemoVeryBasicV3)

• Handle the operation with a registered
WindowListener object.

addWindowListener( <instance of WindowListener> );

• This method is inherited from the parent class of
JFrame, which is Window

– therefore, need to import java.awt.event.*

26

class DemoVeryBasicFrame extends JFrame {

public DemoVeryBasicFrame () {

setDefaultCloseOperation(JFrame.DO_NOTHING_ON_CLOSE);

addWindowListener(

new WindowAdapter() {

public void windowClosing(WindowEvent e) {

      System.out.println( "in windowClosing method" );

        System.out.println( e );

         System.out.println( e.getSource() );

          System.exit(0);

}

     }

);

}

}

DemoVeryBasicV4

*

* This is advanced; this code defines 
a WindowListener.  That’s all you need 
to know for now…

27

• The method addWindowListener registers
the passed parameter on the instance of
DemoVeryBasicFrame
– the passed parameter is an instance of a WindowListener

• What is a listener?
– A specialized piece of code that specifies what should

happen for a specific type of event occurrence
– By specific type, we don’t just mean the type of action, but

rather the type of action with respect to a component
– We need to understand what events are and how they are

created

How does this code work?

28

• Each component in an application is a
potential source of events

• When something happens, an instance of an
event object gets created by built-in Swing
code
– Events are represented by objects
– the instance itself contains information that

identifies the source of the event
• An event always has a source

– for now, we will assume that the source is a
component — it “fires” the event

What are Events?



29

Java Events

• Basic idea: set up listeners to detect when events
of interest have occurred
– But the listening is always connected to a component
– An application registers listener objects on the various

components

• An event listener must be installed for each
components from which events may be
generated
– otherwise, any events that are generated will pass

undetected

30

• There are two types of events: low-level and
semantic

• A low-level event is:
– a window-system occurrence, or
– a low-level input (e.g., mouse button press,

mouse button released, mouse button click
(pressed and released), mouse cursor enter,
mouse cursor exit, down, mouse up, key pressed,
key released, key typed).

• A semantic event is any occurrence that is not
a low-level event.

Types of Events

31

User Action Event that Occurs
click a button ActionEvent

press Enter while in a text field ActionEvent

choose a menu item ActionEvent

close a frame (main window) WindowEvent

press a mouse button MouseEvent

(while the cursor is over a component)
 move the mouse over a component MouseMotionEvent

component becomes visible ComponentEvent

component gets the keyboard focus FocusEvent

Table or list selection changes ListSelectionEvent

Types of Events

32

Java’s Event Class Hierarchy

EventObject

AWTEvent

ActionEvent ComponentEvent

InputEvent WindowEvent

MouseEvent KeyEvent

A subset of Java’s Event Class
Hierarchy is shown here

See Java API for full hierarchy



33

1. The user presses the close button in
the titlebar

2. This caused the creation of a
WindowEvent

3. The source of the event is the instance
of DemoBasicFrame

4. A WindowListener is registered on
that instance; its windowClosing
method gets invoked

5. The body of the windowClosing
method invokes System.exit(0)

Example: DemoVeryBasicV3

34

Comments

• Any window state change generates an event:
– e.g., being opened, closed, activated or deactivated,

iconified or deiconified
– Registered listeners are notified

• The relevant methods in the listener is invoked (depending
on the type of WindowEvent).

• The instance of the WindowEvent is always passed to the
method.

• Other types of events might be generated
– e.g., it the user mouses-down or presses keys in

DemoBasicFrame

– MouseListener, KeyListener not registered, so
no methods get invoked

35

Comments

• What happens if two listeners are
registered?
– both listeners will “hear” the relevant events
– the methods will be invoked in the order in

which the listeners were registered
• Each event source can have multiple

listeners registered on it.
• Conversely, a single listener can register

with multiple event sources.

36

Instantiating the JFrame

1. Must specify look and feel
– otherwise, resort to default   

2. Must specify reaction to close operation
– otherwise, resort to default

3. Must add components to content pane
– otherwise, content pane will not appear,

frame will consist only of titlebar
– must define components, add them to

contentPane, then register listeners on them



37

Example 2.4, four versions

DemoBasicV1, V2, V3, V4
• A trivial application to demonstrate some basic

things about adding components to frames
– four different versions
– V1: adding directly to contentPane
– V2: adding to contentPane via intermediate

container, JPanel
– V3: adding ActionListener to a component,

using an inner class
– V4: adding ActionListener to a component,

without using an inner class

38

Adding Components

• To start, let’s use JLabel
– can display either text, an image, or both
– does not react to input events
– cannot get the keyboard focus

JLabel sampleLabel = new JLabel("Sample Label");

sampleLabel

.setFont(new Font("sanserif", Font.PLAIN, 16));

sampleLabel

.setPreferredSize(new Dimension(250, 100));

• The methods setFont and setPreferredSize
are inherited from JComponent

39

How do we
add sampleLabel to frame?

Approach #1
• access contentPane using method
getContentPane()

• add sampleLabel to content pane
directly

• e.g., DemoBasic_v1
– default LayoutManager for JFrame’s
contentPane is BorderLayout

40

How do we
add sampleLabel to frame?

Approach #2
• Construct a new JPanel, say panel
• add sampleLabel to panel
• use method setContentPane(panel)

• e.g., DemoBasic_v2
– default LayoutManager for JPanel is
FlowLayout



41

Adding Other Components

• JButton

– can display either text, an image, or both
– an implementation of a "push" button
– generates events

• ActionEvent for mouse click
• also MouseEvent, KeyEvent

toggleButton = new JButton("Press me!");

toggleButton

.setFont(new Font("sanserif", Font.PLAIN, 16));

42

DemoBasicV3, DemoBasicV4

JButton

JLabel

43

Registering an ActionListener

Register by invoking the following from
within constructor DemoBasicFrame
constructor:

toggleButton

.addActionListener( <*****> );

NOTICE!!!!!
• The parameter <*****> must be an instance of an
ActionListener

• How do we define an ActionListener?
44

Creating an ActionListener

• How do we define an ActionListener?
– ActionListener is an interface
– In fact, all of the various listeners (for all of the

various types of events) are interfaces
– Recall that an interface cannot be instantiated

• What can we do?
– Interfaces can be implemented
– The compiler enforces the rule that if a class
implements an interface, it must provide bodies for
all of the methods defined in the interface



45

Example of a Class Implementing
an Interface

public abstract class WindowAdapter 

implements WindowListener

{
void windowActivated(WindowEvent we) {}

void windowClosed(WindowEvent we) {}

void windowClosing(WindowEvent we) {}

void windowDeactivated(WindowEvent we) {}

void windowDeiconified(WindowEvent we) {}
void windowIconified(WindowEvent we) {}

void windowOpened(WindowEvent we) {}

}

46

More on this example…

• So the class WindowAdapter implements
the WindowListener interface…
– Compiler will enforce rule that the class must

provides a body for each of the methods
defined in the interface

– But the compiler will allow a class to define
all of the bodies to be empty!!!

• Q1: What do we call such a class?
• Q2: Why would we want such a class anyway?

47

More on Interfaces

• Q1: What do we call such a class?
– An adapter class
– The Java Foundation Classes (JFC) include several of

these

• Q2: Why would we want such a class anyway?
– we can extend an adapter class and override selected

methods
– it can be easier to do this with a adapter class from

JFC than to implement the interface ourselves

48

Listeners and Corresponding
Adapters
Listener interface (# methods) Adapter class
WindowListener (7) WindowAdapter

ActionListener (1) not defined

Later we’ll discuss…

KeyListener (3) KeyAdapter

MouseListener (5) MouseAdapter

MouseInputListener (7)* MouseInputAdapter

ItemListener (1) not defined

FocusListener (2) FocusAdapter

* MouseInputListener combines MouseListener
 and MouseMotionListener



49

Creating an ActionListener

ActionListener is an interface; it cannot be instantiated
Option A:
• create a named inner class that implements the interface
• e.g., DemoBasicV3
Option B:
• make the sub-class of JFrame implement the interface
• e.g., DemoBasicV4
Option C:
• create an anonymous inner class that implements the

interface
• e.g., DemoVeryBasicV4

50

A: Using a Named Inner Classes (1)

What is an inner class?
• A nested class is a class that is a member

of another class.
• A non-static nested class is called an inner

class.

[The JavaTM Tutorial, “Implementing Nested Classes”]

51

A: Using a Named Inner Classes (2)

To make use of a named inner class:
• define a class within the class definition for

the JFrame sub-class
– e.g., in DemoBasicV3, the class MyListener

is defined within the class DemoBasicFrame

• design the class to implement
ActionListener

52

...

public class NameOfProgramFrame extends JFrame {

public ...

private ...

public class NameOfProgramFrame() {}

class MyListener implements ActionListener {

public void actionPerformed(ActionEvent ae
{...

}

}

private ...

public ...

}

Declare variables (“fields”, “attributes”)

Constuctor

class must implement all of the
ActionListener methods
(there is only one, though)

Other methods

In
ne

r 
C

la
ss



53

A: Registering an ActionListener

• Suppose an ActionListener can be
instantiated from a named inner class

• To register it, invoke the following:

toggleButton

.addActionListener( new MyListener() );

**This was done in DemoBasicV3
54

B: Using the JFrame sub-class

• In all of these examples,
DemoBasicFrame was defined as a sub-
class of JFrame

• What prevents us from also making
DemoBasicFrame an ActionListener?

55

B: Using the JFrame sub-class

• How to make DemoBasicFrame an
ActionListener:
– need to assert that it implements the
ActionListener interface

• use keyword implements in class definition
– need to ensure that method bodies are provided for

all of the methods defined in the interface
• the compiler will ensure this

– e.g., in DemoBasicV4,
the class DemoBasicFrame implements
ActionListener

56

import ...

public class NameOfProgram

{

public static void main(String[] args)

{

}

}

public class NameOfProgramFrame extends JFrame

implements ActionListener

{

} Our GUI class implements the
methods of the
ActionListener listener



57

...

public class NameOfProgramFrame extends JFrame

implements ActionListener

{

public ...

private ...

public class NameOfProgramFrame() {}

public void actionPerformed(ActionEvent ae) {}

public ...

private ...

}

Declare variables (“fields”, “attributes”)

Constructor

Must implement all of the
ActionListener methods
(there is only one, though)Other methods

58

B: Registering an ActionListener

• Suppose the constructor of the
JFrame sub-class also instantiates an
ActionListener

• To register it, invoke the following
(from within constructor):

toggleButton.addActionListener(this);

**This was done in DemoBasic_v4

59

C: Using an Anonymous Inner Class

What is an anonymous inner class?
• an inner class that is declared without a

name
• Syntax:
new <ClassOrInterfaceName>()

{ <body> }

• This can be used in places where an
instance is needed

60

C: Using an Anonymous Inner Class

Finally, we revisit DemoVeryBasicV3:

• Recall we added a window listener to
DemoVeryBasicFrame,

• the argument to the addWindowListener
method was:

new WindowAdapter() {

public void windowClosing(WindowEvent we)

{ System.exit(0); }

}

• this defines a WindowListener using an
anonymous inner class



61

C: Using an Anonymous Inner Class

We can do the same for ActionListener:

new ActionListener() {

public void actionPerformed(ActionEvent ae)

{ ... }

}

• this defines an ActionListener

**This was done in DemoBasic_v5
62

Discussion

• To make use of a particular listener:
– should I extend its adapter class, or
– should I implement the interface?

• If I implement the interface, which class should
do it?
– the JFrame child class,
– a named inner class, or
– an anonymous inner class?

• If I extend the adapter, should I do it with
– an anonymous inner class, or
– a named inner class?

63

Discussion

• When extending adapter classes:
– need to provide code only for methods that are

needed
– need to define an additional inner class (either

named or anonymous)
– if you use an anonymous inner class, your code can

be difficult to read
• some say use sparingly, only for classes with one or two

short methods; some say don’t use at all
– if you use a named inner class, you need to

instantiate an additional object
– you can only extend one adapter class (compare with

next option)
• Java does not include multiple inheritance (unlike C++ or

Eiffel)
64

Discussion

• When implementing interfaces:
– need to provide code for all of the methods

• whether you need them or not
• can define method bodies to be empty, though

– don’t need to define an additional inner class;
you can use the JFrame subclass

– a class can implement many different listeners



65

Whether to Extend Adapters or
Implement Listeners…

• Largely a matter of personal choice
• Sample applications in this course will do both

– in DemoBasicV3, V4, we implemented the
ActionListener interface

• note that no ActionAdapter class is defined in
Java

– DemoVeryBasicV4 extended WindowAdapter

• this was done using an anonymous inner class
• you could easily define a named inner class instead

(in fact, the code probably would be more readable
this way)


